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Modeling Achievement Trajectories When Attrition

Is Informative

Betsy J. Feldman

University of Washington

Sophia Rabe-Hesketh

University of California, Berkeley, and Institute of Education, University of

London

In longitudinal education studies, assuming that dropout and missing data

occur completely at random is often unrealistic. When the probability of

dropout depends on covariates and observed responses (called missing at

random [MAR]), or on values of responses that are missing (called informative

or not missing at random [NMAR]), inappropriate analysis can cause biased

estimates. NMAR requires explicit modeling of the missingness process together

with the response variable. In this article, we review assumptions needed for

consistent estimation of hierarchical linear growth models using common

missing-data approaches. We also suggest a joint model for the longitudinal

data and missingness process to handle the situation where data are NMAR. The

different approaches are applied to the NELS:88 study, as well as simulated

data. Results from the NELS:88 analyses were similar between the MAR and

NMAR models. However, use of listwise deletion and mean imputation resulted

in significant bias, both for the NELS:88 study and simulated data. Simulation

results showed that incorrectly assuming MAR leads to greater bias for the

growth-factor variance–covariance matrix than for the growth factor means,

the former being severe with as little as 10% missing data and the latter with

40% missing data when departure from MAR is strong.

Keywords: longitudinal, NELS:88, not missing at random, nonignorable missing data,

simulation

Educators and education researchers are increasingly using longitudinal data to

assess the impact of interventions and to track children’s progress through

school. Rivkin (2007) argues that, to investigate students’ progress, it is neces-

sary to look at growth and change at the student level, and, when possible, asso-

ciate that with teacher performance, in addition to school and district

characteristics. The U.S. government programs, No Child Left Behind and Race

to the Top (U.S. Department of Education, 2009), are also encouraging states to
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collect and use longitudinal data to investigate teacher and school performance

by looking at individual student growth in achievement instead of considering

only school- or district-level mean test scores (Ladd & Lauen, 2009), and the

Institute of Education Sciences (U.S. Department of Education) offers grants

to help states set up such longitudinal data collection systems. At this time,

42 states have received grants to set up student-level longitudinal data collection

systems for their schools (http://nces.ed.gov/Programs/SLDS/summary.asp).

Moreover, the American Recovery and Reinvestment Act also required that

states institute educational longitudinal data collection systems to receive their

full funding (McNeil, 2009).

When longitudinal data are used, missed assessments and attrition are inevitable,

and inappropriate handling of missing data can lead to biased results (Enders, 2001;

Peugh & Enders, 2004). Our goal, in this article, is to clarify the assumptions

invoked by the most commonly used methods for dealing with missing data in

longitudinal research, as well as the risks incurred when those assumptions are

incorrect. Specifically, assumptions must be made regarding the reasons for data

being missing, or the missingness mechanism. The missingness mechanism is

formally expressed in terms of how the probability of a response being missing

depends on other observed and unobserved variables, as well as on the response

itself. We describe different types of missingness mechanisms and describe the

assumptions invoked when using traditional approaches, such as listwise deletion

(also referred to as complete case analysis), mean imputation (or mean substitution),

and standard maximum likelihood estimation (MLE) with all available data.

Although listwise deletion and mean substitution have been shown to be

problematic (e.g., Schafer & Graham, 2002), such methods are still pervasive

in education research. Peugh and Enders (2004) reviewed methods used for han-

dling missing data in 23 education journals in 1999 and 2003. They found that

only 34% and 74% of studies identified as having missing data acknowledged the

problem in 1999 and 2003, respectively, and that the vast majority of those used

listwise or pairwise deletion. Jeličić, Phelps, and Lerner (2009) found similar

results in their review of 100 longitudinal studies published between 2000 and

2006 in Child Development, Developmental Psychology, or Journal of Research

on Adolescence. Recent examples of the use of listwise deletion in education

journals include Marcotte, Bailey, Borkoski, and Kienzl (2005), Cai, Wang,

Moyer, Wang, and Nie (2011), and Kim, Petscher, Schatschneider, and Foorman

(2010). A similar approach to listwise deletion is dropping individuals with fewer

than two or three time points (for an example, see Bouffard, Vezeau, Roy, & Len-

gelé, 2011). Mean imputation appears to be used less often (e.g., see Corriveau

et al., 2009; McNiece & Jolliffe, 1998; Metzger, Dawes, Mermelstein, & Waks-

chlag, 2011). Some authors impute conditional means, taking into account a

small number of covariates (e.g., Borman et al., 2007; D’Agostino, 2000;

McNiece, Bidgood, & Soan, 2004). Standard MLE with all available data is one

of the recommended modern approaches for handling missing data (for examples
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using MLE, see Grimm, Steele, Mashburn, Burchinal, & Pianta, 2010; Kieffer,

2011; Montague, Enders, & Cavendish, 2011).

In addition to these traditional approaches, we describe, in detail, the random-

coefficient-dependent model for nonignorable missingness—often the most appro-

priate model for achievement trajectories with missing data due to dropout—and

we provide code for its estimation in Mplus (for more types of nonignorable

missing-data models in Mplus, see Enders, 2011; Muthén, Asparouhov, Hunter,

& Leuchter, 2011). To demonstrate and compare different approaches to dealing

with missing data, we use the NELS:88 longitudinal high school testing data.

Finally, we carry out a comprehensive simulation study to investigate the

performance of different approaches in terms of bias of parameter estimates and

standard errors when missing-data assumptions are violated.

Missingness Mechanisms and Modeling Techniques

Models for Growth

Before discussing missing data mechanisms, we begin with a brief description

of a model for growth. Typically, heterogeneity, or individual differences, in

developmental and educational trajectories is modeled with hierarchical linear

models (HLM), also referred to as mixed, mixed effects, random effects, random

coefficients, multilevel, or growth curve models (e.g., Bollen & Curran, 2006;

Rabe-Hesketh & Skrondal, 2008; Raudenbush & Bryk, 2002; Singer & Willett,

2003). In HLM, repeated measurements are expressed as a function of time and indi-

vidual differences. Individual differences in the outcome variable when time equals

zero, and in rate of change, are modeled by permitting the intercept and slope/slopes

of time, respectively, to vary randomly across individuals. The intercept and slope/

slopes are, therefore, referred to as random coefficients, random effects, or (latent)

growth factors, and they are responsible for the within-person covariances between

measurements at different times. The intercept and slope/slopes are, in turn,

expressed as linear functions of the individual-specific covariates and residuals.

Time-varying covariates may also be used in the models. Generally, growth models

are estimated by maximum likelihood or restricted maximum likelihood, which

allows the timing and number of observations to differ between individuals.

Here, we consider a multiple-group growth curve model where the response ygit

for individual i in group g at occasion t is modeled as a linear function of the ran-

dom coefficients: the intercept, �0gi (the expected response for individual i when

time¼ 0) and, usually, one or more slope coefficients, �sgi (s¼ 1, 2, . . . , S), which

are multiplied by powers of time, agit (e.g., �1giagit, �2giagit
2, �3giagit

3, . . . ,

�Sgiagit
S). The slope coefficients describe systematic linear or curvilinear change

over time in individual i’s responses. The times of measurement, agit, are typically

based on age or time since enrollment in a program, school, or study; and

are usually centered by subtracting a relevant age or time point. Often this is the

time of, or age at, the first measurement occasion, making the intercept, �0gi,

Feldman and Rabe-Hesketh

3

 at Hong Kong Institute of Education on November 4, 2012http://jebs.aera.netDownloaded from 

http://jebs.aera.net


individual i’s expected response at the first measurement occasion, or initial sta-

tus. The times of measurement may be the same for all individuals, or may be

unique for each individual (e.g., current age).

We express this multiple-group linear model as having two levels: Level 1

characterizes the time-specific individual responses and Level 2 characterizes the

between-person variability in growth trajectories.

Level 1:

ygit ¼ �0gi þ �1giagit þ �2gizgit þ egit; ð1aÞ

Level 2:

�0gi ¼ b00g þ b01gxgi þ u0gi;

�1gi ¼ b10g þ b11gxgi þ u1gi;

�2gi ¼ b20g þ b21gxgi þ u2gi;

ð1bÞ

where zgit is a time-varying covariate for individual i in group g at time t, and xgi

is a time-invariant covariate for individual i. It is assumed that egit * N(0,s2
g);

and that ugi * N(0, �g), where ugi is a vector of intercept and slope residuals

for individual i in group g. It is furthermore assumed that egit are independent

across individuals and time, ugi are independent across individuals, and egit and

ugi are independent for all i, g, and t.

Substituting the Level 2 equations into the Level 1 model gives the reduced-

form equation:

ygit ¼ b00g þ b01gxgi þ b10gagit þ b11gxgiagit þ b20gzgit þ b21gxgizgit

þ u0gi þ u1giagit þ u2gizgit þ egit:
ð2Þ

Missing Data Mechanisms and Approaches for Dealing With Missing Data

To discuss missing-data mechanisms and approaches to modeling them, we

first introduce some terms. The complete data (if all responses were observed)

for individual i are contained in a vector, ygi, which is comprised of two subvec-

tors: the observed data, yobs
gi and the unobserved data, ymiss

gi : ygi ¼ fyobs
gi ; y

miss
gi g.

Little (1995) and Little and Rubin (2002) describe three broad classes of

missing-data processes, or mechanisms. Missing data are considered to be miss-

ing completely at random (MCAR) when the missingness does not depend on any

other observed or unobserved variables in the model. Let ygit be an observation

for individual i in group g at time t, and dgit be an indicator that equals 1 if ygit is

missing at time t and 0 otherwise. Data are MCAR if:

prðdgit ¼ 1jXgi; ygi; ugiÞ ¼ prðdgit ¼ 1Þ; ð3Þ

Longitudinal Modeling With Informative Attrition
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where Xgi is a matrix of time-varying (zgi) and time-invariant (xgi) covariate

values for individual i in group g included in the model for ygit. Although rare,

true MCAR can occur. For example, if data are missing by design (e.g., only a

randomly selected subsample is followed past a certain point in time), it may

be assumed to be MCAR. Usually, however, the reason for missing data is

unknown and missing data are unlikely to be MCAR. In educational research, for

example, individuals may be missing observations because of frequent illness or

absence, or school suspension—circumstances that are likely to be related to

their test scores (ygi).

Mean imputation (imputing the mean value of the observed outcomes at each

time point) is an approach that gives consistent estimates of regression coeffi-

cients when the data are MCAR, there are no covariates other than time (or func-

tions of time), and the time points are the same across individuals. However, even

under these circumstances, estimators of variances, covariances, and conven-

tional standard errors will be inconsistent when mean imputation is used. This

occurs for several reasons: First, the imputed data are constant at a given time

point, which results in downward bias for the residual variance and consequently

for the standard errors of regression coefficients. Second, if the model includes

covariates other than time, estimates of regression coefficients will be biased

toward zero because the imputed responses at a given time point are the same

across covariate values, a problem partly overcome by taking some covariates

into account using conditional means or regression imputation. Finally, treating

imputed values as real leads to underestimated standard errors because uncer-

tainty regarding the imputed responses is ignored, a problem that can be

addressed by using multiple imputation (see, e.g., Enders, 2010; Schafer, 1999).

Covariate-dependent missingness describes a condition in which the missing-

ness can depend on covariates that are included in the model for ygit, but does not

depend on the outcomes, either missing or observed, after conditioning on the

covariates:

prðdgit ¼ 1jXgi; ygi; ugiÞ ¼ prðdgit ¼ 1jXgiÞ: ð4Þ

When missingness depends only on covariates that are in the model, it is not

necessary to explicitly model the residual covariance structure of the ygi. Thus,

less computationally intensive estimators may be used. An example might be

ordinary least squares (OLS) using all available data, with appropriate adjust-

ments for the standard errors, which is known as pooled OLS in econometrics.

Pooled OLS is equivalent to generalized estimating equations (GEE; Liang &

Zeger, 1986) with continuous responses and an independent working correlation

structure. Consistent estimates are also obtained using complete case analysis

where the data on individuals with any missing data are discarded (listwise dele-

tion). However, complete case analysis is inefficient (has larger standard errors

and lower power) because it uses only a subset of the available data.
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Missing data are described as missing at random (MAR) when missingness

depends only on the observed responses, yobs
gi and covariates (thus, covariate-

dependent missingness can be viewed as a special case of MAR):

prðdgit ¼ 1jXgi; ygi; ugiÞ ¼ prðdgit ¼ 1jXgi; y
obs
gi Þ: ð5Þ

If the missing data are MAR, estimating the correct longitudinal model with

maximum likelihood, and utilizing all available data, gives consistent estimates

of population values. This approach is sometimes called full information maxi-

mum likelihood (FIML). Most software that estimates growth models, such as

multilevel modeling or structural equation modeling software, utilizes MLE and

can handle MAR missingness. When this approach is used, there is no need to

impute data unless covariates are missing while the response variable is

observed, a situation not considered in this article. It is important to remember

that the MAR assumption is more likely to hold if the model includes all the cov-

ariates that may be related to missingness (Collins, Schaefer, & Kam, 2001).

The two types of missingness mechanisms, MCAR and MAR, are referred to

as ignorable or noninformative. That is, if MCAR or MAR holds, then the like-

lihood function can be factorized into the likelihood for the longitudinal data

multiplied by the likelihood for the missingness process. This allows consistent

estimates when the missing-data process is ignored (Little & Rubin, 2002). Note,

however, that of the ignorable missing-data mechanisms, the only one that can be

tested is MCAR (Little, 1995). Whether or not MAR holds is therefore an

assumption that cannot be assessed empirically.

When the probability that data are missing depends on either (1) the missing

values themselves (the values of the missing outcomes had they been observed)

or (2) individual values of a latent variable such as a random coefficient that

appears in the growth model, the missingness is not ignorable and the missing

data are described as not missing at random (NMAR; Little & Rubin, 2002).

Little (1995) referred to the first case as outcome-dependent missingness:

prðdgit ¼ 1jXgi; ygi; ugiÞ ¼ prðdgit ¼ 1jXgi; y
obs
gi ; y

miss
gi Þ: ð6Þ

Outcome-dependent missingness might result if a student drops out because of an

abrupt drop in achievement, or a patient suddenly becomes too ill to continue an

intervention study.

The second case is random-coefficient-dependent missingness (Little, 1995;

Wu & Carroll, 1988):

prðdgit ¼ 1jXgi; ygi; ugiÞ ¼ prðdgit ¼ 1jXgi; y
obs
gi ; ugiÞ: ð7Þ

Random-coefficient-dependent missingness would result if individual students’

probability of dropping out was predicted by their achievement trajectories, or

intercept and slope/slopes. When missingness is NMAR, the mechanism of
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missingness must be explicitly modeled, simultaneously with the growth, to get

consistent growth estimates.

There are many ways of modeling nonignorable missingness, but all fall into

two basic approaches. In a selection model, the missingness process is modeled

directly by assuming that the missing data either depend on the missing outcomes

(outcome-dependent missingness) or on the random effects or latent variables

(random-coefficient-dependent missingness). In contrast, in a pattern mixture

model, the population is viewed as a mixture of subpopulations characterized

by different missing data patterns. Each subpopulation has a different set of para-

meter values for the growth process. These parameters can be estimated sepa-

rately in each subpopulation and then combined using a weighted mean

(Hedeker & Gibbons, 1997). Both modeling approaches make unverifiable

assumptions regarding the nature of the missingness mechanism and there is

no empirical way of selecting the most appropriate model (Molenberghs,

Beunckens, Sotto, & Kenward, 2008), so model choice must be based on theore-

tical considerations, and sensitivity analyses should be used to assess the impact

of different assumptions on the substantive conclusions.

Selection models that assume outcome-dependent missingness have been pro-

posed by Hausman and Wise (1979) and Diggle and Kenward (1994). Dropout is

modeled as depending on the current (missing) response as well as on lagged

responses. The missing response variable is then integrated out of the likelihood.

These models are known as outcome-dependent selection models (Little, 1995)

and have recently been applied to education data (Xu & Blozis, 2011) and

psychiatric clinical trial data (Enders, 2011).

A second type of selection model is the focus of this article because it may be

especially useful when missingness results from students dropping out of school.

This model, shown in Figure 1, is known as a shared-parameter or random-

effect-dependent missing data model (Little, 1995; Wu & Carroll, 1988). The

random-effect-dependent missing-data model assumes that one or more latent

variables (e.g., intercept and slope) are responsible for both growth and drop-

out processes, and that, conditional on those latent variables (and covariates), the

two processes are independent. Similar dual process models were first introduced

by Heckman (1979) to deal with sample selection problems in cross-sectional

data. In the approach we use, dropout is modeled as a discrete-time survival pro-

cess in which the conditional probability that dropout for individual i in group g

occurs at time t, given that it did not happen before time t, is referred to as the

discrete-time hazard (hgit):

hgit ¼ prðTgi ¼ t jTgi � t; �0gi; �1gi; xgiÞ; ð8Þ

where Tgi is the occasion when person i drops out.

The log-odds, or logit, of hgit is modeled as a function of individual i’s inter-

cept �0gi and slope of time �1gi (and possibly slopes of nonlinear functions of

time) in the growth curve model, a covariate xi (multiple covariates may be used)

Feldman and Rabe-Hesketh
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with regression coefficient �hg,, and occasion-specific thresholds thgt (or inter-

cepts �thgt):

logitðhgitÞ ¼ �thgt þ �hg1�0gi þ �hg2�1gi þ �hg3xgi: ð9aÞ

Achievement
8th Grade

Achievement
10th Grade

Achievement
12th Grade

Intercept Linear 
Slope

1 1
1

Quadratic 
Slope

2
4

4 16

Risk-factor 
Index

Model for Growth

Dropout between 
8th & 12th grade

Intercept Linear 
Slope

Risk-factor 
Index

Single-Indicator
NMAR Model

Dropout between 
8th & 10th grade

Dropout between 
10th & 12th grade

Intercept Linear 
Slope

Risk-factor 
Index

Survival-Process
NMAR Model

FIGURE 1. Path diagrams of growth model and two models used in this article for analyzing

data with nonignorable missingness (i.e., missing data that are NMAR). The quadratic

slope was modeled without variance and is not used in the missing-data models.
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This model, referred to here as a survival-process MNAR model (see Figure 1), is

similar to that used by Wu and Carroll (1988) except that they specified a cumu-

lative probit model for the ordinal drop-out time and did not allow missingness to

depend on covariates, given �0gi and �1gi. A similar model was also considered

by Enders (2011).

A second, similar, approach is to model the probability of ever dropping out.

We refer to this as a single-indicator MNAR model (Figure 1). Below, dgi equals

1 if individual i dropped out (note that dgi does not have a time subscript). The

logit of the probability that dgi ¼ 1 replaces the logit of hgit in Equation 9a, and

the parameters have a d subscript to distinguish them from those in Equation 9a:

logitðprðdgi ¼ 1j�0gi; �1gi; xgiÞ ¼ �tdg þ �dg1�0gi þ �dg2�1gi þ �dg3xgi: ð9bÞ

If data are missing intermittently, the model shown in Equation 9b can be used

for time-varying binary indicators dgit for the response being missing at time t

(e.g., Albert & Follmann, 2009). Alternatively, intermittently missing data can

be treated as MAR while dropout is treated as NMAR (e.g., Enders, 2011). The

models can be extended to binary or count outcomes using the generalized linear

modeling framework (Albert & Follmann, 2009; Follmann & Wu, 1995; ten

Have, Kunselman, Pulkstenis, & Landis, 1998).

It is important to note that very strong assumptions underlie all NMAR models,

including the random-effect-dependent missing-data model, and consistent estima-

tion relies on these assumptions being correct. In addition to the assumption that

the latent variables are normally distributed and that, conditional on latent vari-

ables, the outcome and drop-out processes (and their indicators) are independent,

consistent estimation requires that the model for dropout is correct. For example,

the drop-out indicator regressions must include all relevant covariates.

Latent class versions of NMAR models have also been proposed, including a

pattern mixture model where, instead of the observed missing-data patterns, a dis-

crete latent variable (which is influenced by the drop-out time) affects the outcome

distribution (Roy, 2003), a random-effects-dependent drop-out model where drop-

out depends on random effects and latent classes that determine the random-effects

means (Beunckens, Molenberghs, Verbeke, & Mallinckrodt, 2008) and a response-

dependent drop-out model where a growth mixture model is used to model growth

(Muthén et al., 2011). These models are discussed by Muthén et al. (2011) who

also extend the Roy (2003) model to include two associated discrete latent class

variables, one related to dropout and the other related to growth.

To investigate the potential consequences of incorrectly handling missing data

that are NMAR, we conducted two empirical studies. The first compared the effects

of different treatments of missing data when modeling trajectories of reading

achievement in the National Education Longitudinal Study of 1988 (NELS:88) data

set. The second was a simulation study in which data were generated according to a

process by which dropout depends on the random coefficients (Equation 9a). All
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analyses were conducted with Mplus 5.21 (Muthén & Muthén, 1998–2009) using

MLE. For the NELS data, robust standard errors were used for all analyses.

Missing Data in the NELS:88 Longitudinal Study

The NELS:88 is a longitudinal study of the academic, vocational, and per-

sonal development of a 1988 cohort of 8th graders. A two-stage sampling

design was used, with schools randomly sampled from the nation’s public

and private schools, and students randomly sampled within each school (Cur-

tin, Ingels, Wu, & Heuer, 2002). Sampling weights make the sample nation-

ally representative of 1988 eighth graders. In 1990 and 1992, a subset of the

original sample was followed up and new individuals were added to the sam-

ple. In each of these years, new sampling weights were calculated to account

for changes in the population and for nonresponse, making the 1990 and

1992 data representative of students in 10th and 12th grades in these years,

respectively, for cross-sectional analyses. In addition, panel weights were

calculated to allow longitudinal study of the subset of the original sample

that was followed (Curtin et al., 2002). The panel weights are designed to

account for nonresponse and for incomplete follow-up of the original 8th

graders, when only those students with complete data are used in the analysis

(Curtin et al., 2002). Here, we analyze the entire 1988 sample with all avail-

able data up to 1992. The appropriate weights for our sample, therefore, are

the 1988 (or baseline) weights. Similar to using panel weights, our approach

allows us to study the trajectories of the original eighth graders through their

senior year. However, our approach allows us to use all available data

instead of dropping individuals who were lost to follow-up, which is required

when panel weights are used.

There are two primary causes for missing data in the follow-up years of

the NELS:88. The first is failure to follow up due to the increased number

of high schools the original eighth-grade cohort attended. Funding limitations

did not allow inclusion of all of the high schools, so only a limited number

were included (Curtin et al., 2002). The second largest reason for missing-

ness is students dropping out of school. We considered data from students

who were lost to follow-up for the first reason to be MAR. However, it is

likely that students are dropping out of school because they are doing poorly,

or their achievement is lagging behind that of their peers. If this is correct,

the probability of dropout may depend on the intercept and slope of the

growth model (random-effect-dependent missingness), as shown in Equation

9a or 9b, making the missing data NMAR. Dropout seems unlikely to depend

on the test scores themselves. First, the scores are not made available to stu-

dents in the NELS study, so they cannot influence dropout directly. Second,

if achievement affects dropout, this relationship is likely to be captured better
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by allowing dropout to depend on the latent growth trajectory than by allow-

ing it to depend on the test score, which measures achievement with error.

We used a multiple-group model to analyze reading-test score (scaled ability

score, called theta, from the items response model) trajectories of two subgroups

of students who had baseline scores: White (n ¼ 16,699) and minority

(n ¼ 5,750). The multiple-group approach was used to investigate differences

between subgroups because it permits all parameters to differ between

groups, allowing tests of mean and variance differences, as well as interac-

tions with a risk-factor index used as a covariate. The minority subsample

comprised students of Black, Latino, and Native American ethnicity and,

thus, had a higher probability of coming from disadvantaged backgrounds

than white students. We did not include the subsample of students identified

as Asian/Pacific Islander because the sample was small and, as a single

group, difficult to classify with respect to level of advantage. We also

omitted students who did not report their ethnicity. In the final analysis sam-

ple of 24,449, 10% dropped out of high school. Of these, 3% dropped out

between 8th and 10th grades, and 7% between 10th and 12th grades. We

used a count of risk factors (e.g., low income, low parent education, sibling

dropout, etc.) to help explain individual differences in the intercept (in 8th

grade) and slope.

NELS Results

Descriptive statistics for the NELS:88 sample are displayed by group in

Table 1. White students had higher mean reading achievement scores than

the minority students in all three years. White students also had fewer risk

factors and a lower drop-out rate than the minority students. Both groups

were about 50% female.

TABLE 1

Descriptive Statistics for NELS:88, by Minority Status

Variable

Minority White Total

n M SD n M SD n M SD

Reading achievement

Time 1 6,147 41.37 7.54 15,753 46.97 8.50 21,900 45.54 8.62

Time 2 3,550 45.04 9.11 11,274 51.09 10.02 14,824 49.79 10.16

Time 3 2,580 47.93 9.70 8,772 54.20 10.35 11,352 52.92 10.54

# Risk factors 1.09 1.13 0.55 0.84 0.72 0.97

% Male .50 .50 .50 .50 .50 .50

% Dropout .13 .34 .09 .30 .10 .32
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Model-Based Approaches

We began with the multiple-group linear growth model shown in Equations

1a,1b, and 2 (and Figure 1), using MLE to estimate the model and assuming all

missing data were MAR. We fitted the model both with and without the risk-

factor index. The model with the risk factor had a better fit (likelihood ratio

[LR] statistic ¼ 1293.21, df ¼ 4, p < .001) so we included the covariate in all

analyses (Table 2).

The number of risk factors a student has in his or her life negatively affects

both the intercept—reading achievement in eighth grade—and the slope, or

improvement in reading across high school (Table 2), suggesting that students

with fewer risk factors both begin and end high school with higher reading

scores, on average. This is true for both White and minority students, but the

effect is slightly stronger, on average, for White students.

In addition to the standard growth model, we estimated the dual-process

models for reading scores and dropout, with the drop-out models shown in

Equation 9a and 9b and in Figure 1. The single-indicator model (Equation

9b) is for the log-odds of dropping out anytime in high school, and the

survival-process model (Equation 9a) is for the log hazard of dropping out

in 10th or 12th grade, individually. All coefficients in the dropout model

were constrained equal across White and minority students except for the

coefficient of the risk index, which was allowed to differ both between

TABLE 2

Results for NELS:88: Maximum Likelihood Parameter Estimates (SE) for Growth Model

(MAR) and Dual-Process Survival Model (NMAR) With Risk Index as Covariate

White Minority

Parameter Growth Dual Process Growth Dual Process

Means

b00 Intercept 48.19 (0.11) 48.19 (0.11) 43.34 (0.20) 43.34 (0.21)

b10 Linear slope 2.19 (0.08) 2.21 (0.08) 1.76 (0.13) 1.78 (0.12)

b20 Quadratic slope �0.16 (0.02) �0.17 (0.02) �0.11 (0.03) �0.13 (0.03)

Risk index coefficient

b01 Intercept �2.26 (0.09) �2.26 (0.09) �1.63 (0.10) �1.62 (0.10)

b11 Linear slope �0.13 (0.02) �0.16 (0.02) �0.05 (0.03) �0.07 (0.03)

Variances

c00 Intercept 54.61 (0.93) 54.58 (0.93) 38.65 (1.27) 38.65 (1.27)

c11 Linear slope 1.20 (0.09) 1.23 (0.09) 0.88 (0.15) 0.92 (0.15)

c01 Covariance 2.56 (0.21) 2.70 (0.21) 3.26 (0.30) 3.30 (0.30)

s2 Level 1 variance 17.47 (0.32) 17.43 (0.32) 17.47 (0.32) 17.43 (0.32)

Note: MAR ¼ missing at random; NMAR ¼ not missing at random.
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groups and, in the survival-process model, between time points. The two

models resulted in very similar estimates, so only the survival-process esti-

mates are shown (Tables 2 and 3). The NMAR-model estimates were not

substantially different from those that resulted from standard MLE, assuming

missing data are MAR (Table 2). Although the estimated coefficient of time

squared in the minority group was lower (�8.9%) in the MAR model, com-

pared with the (NMAR) survival-process model when not controlling for the

risk index (results not shown), this difference disappeared when the risk

index was included. This suggests that the risk index is necessary (but not

necessarily sufficient) for the MAR assumption to hold.

Ad Hoc Approaches

Unlike the analyses that assumed missingness was MAR, analyses utilizing

listwise deletion and mean imputation resulted in some strikingly divergent para-

meter estimates as compared with the survival-process model. The estimates and

standard errors from these two analyses are shown, together with the results from

the survival-process model, in Table 4. For all estimates, we calculated the per-

centage difference from the survival-process model and the largest of these are

highlighted in Table 4 (bold if greater than 20% and underlined if greater than

100%). At the first time point, there were no missing values and the estimated

intercept means did not differ very much between the survival-process and

mean-imputation analyses. The listwise-deletion analysis, however, excluded all

students who dropped out in either 10th or 12th grades and the intercept mean

was higher than in the model-based approaches, because weaker students were

more likely to drop out.

Both listwise deletion and mean imputation resulted in considerable, and

sometimes hard-to-predict, differences in the estimated slopes, as well as the

TABLE 3

Results for NELS:88: Estimates for Log-Hazard of Dropout in Dual-Process Model

Estimate (SE) Odds Ratio 95% CI

Parameter

th1 10th grade 0.37 (0.25)

th1 12th grade �0.78 (0.23)

�h11 Intercept �0.07 (0.01) 0.93 [0.91, 0.94]

�h12 Linear �0.33 (0.12) 0.72 [0.57, 0.90]

Risk index coefficient

�gh13 (White, 10th grade) 0.70 (0.04) 2.02 [1.85, 2.20]

�gh13 (Minority, 10th grade) 0.40 (0.04) 1.49 [1.37, 1.62]

�h23 (White, 12th grade) 0.46 (0.04) 1.58 [1.46, 1.70]

�h23 (Minority, 12th grade) 0.25 (0.04) 1.28 [1.18, 1.39]
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TABLE 4

Results for NELS:88: Estimates (SE) Using Ad Hoc Approaches and Panel Weights to Deal With Missing Data

White Minority

Parameter

Dual

Process

Listwise

Deletion

Mean

Imputation

Panel

Weights

Dual

Process

Listwise

Deletion

Mean

Imputation

Panel

Weights

Means

b00 Intercept 48.19 (0.11) 49.17 (0.15) 48.15 (0.11) 48.43 (0.18) 43.34 (0.21) 44.79 (0.29) 43.37 (0.20) 45.03 (0.33)

b10 Linear slope 2.21 (0.08) 2.29 (0.09) 2.01 (0.07) 2.29 (0.12) 1.78 (0.12) 1.63 (0.13) 2.96 (0.13) 1.67 (0.15)

b20 Quad. slope �0.17 (0.02) �0.18 (0.02) �0.12 (0.02) �0.18 (0.03) �0.13 (0.03) �0.09 (0.03) �0.26 (0.03) �0.09 (0.03)

Risk Index coef.

b01 Intercept �2.26 (0.09) �2.06 (0.15) �2.18 (0.09) �2.28 (0.19) �1.62 (0.10) �1.49 (0.15) �1.53 (0.10) �1.54 (0.18)

b11 Linear slope �0.16 (0.02) �0.11 (0.03) 0.15 (0.02) �0.09 (0.03) �0.07 (0.03) �0.01 (0.04) 0.21 (0.03) �0.03 (0.04)

Variances

c00 Intercept 54.58 (0.93) 53.22 (1.15) 49.29 (0.87) 53.13 (1.40) 38.65 (1.27) 42.91 (2.02) 32.20 (1.16) 41.24 (2.29)

c11 Linear slope 1.23 (0.09) 1.15 (0.09) 1.28 (0.07) 1.04 (0.11) 0.92 (0.15) 0.87 (0.14) 1.53 (0.11) 0.62 (0.15)

c01 Covariance 2.70 (0.21) 1.97 (0.22) �2.63 (0.21) 2.04 (0.27) 3.30 (0.30) 2.60 (0.36) �2.35 (0.29) 2.92 (0.37)

s2 Residual 17.43 (0.32) 16.92 (0.33) 20.51 (0.32) 17.33 (0.50) 17.43 (0.32) 16.92 (0.33) 20.51 (0.32) 17.33 (0.50)

Note: Bold indicates estimate >20% difference relative to dual-process survival model. Bold and underlined indicates estimate >100% difference, relative to

dual-process survival model.
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coefficients from the regression of growth factors on the risk index (Table 4).

Listwise deletion resulted in an overall positive difference in the mean trajec-

tories, relative to the survival-process model, but the magnitude of the difference

varied with the number of risk factors. This is shown in Figure 2. With no risks,
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Minority, SPM Minority, LWD
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Zero Risks

Three Risks

FIGURE 2. NELS:88 reading achievement trajectories, comparing listwise-deletion

(LWD) with the survival-process model (SPM) results. When there are no risk factors, the

intercept for LWD is slightly higher but the slopes are not affected. As risks increase, the

slopes are increasingly more positive, relative to SPM.
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the lines from the two analyses are approximately parallel, with the listwise-

deletion estimates higher across high school. However, using listwise deletion

gives the appearance that students with more risks are not only starting higher

but also have a more positive trajectory. This hides the effect of risk factors

on the progress of the student. The survival-process model suggests that more risks

actually decrease the slope, especially for White students (Figure 2, Table 4).

Zero Risks

Three Risks

FIGURE 3. NELS:88 reading achievement trajectories: comparing mean-imputation

(MIMP) with the survival-process model (SPM) results. Minority slopes are more affected

by the mean-imputation approach, and as risks increase, the difference grows greater.
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Mean imputation resulted in even greater differences in the estimated average

trajectories (Figure 3). With no risk factors, mean imputation, as opposed to the

survival-process model, gives the appearance that the minority students are

improving more rapidly. Based on this analysis, it could be argued that the minor-

ity students with no risks are, on average, catching up with their White peers and

narrowing the minority achievement gap. When students come in with more risk

factors, the slope difference is even greater, giving the appearance that the

achievement gap may close on its own during high school.

NELS:88 Panel Weights

A final set of analyses utilized the panel weights supplied with the NELS:88

data. Many people using the NELS:88 data for longitudinal research would utilize

listwise deletion, and correct for nonresponse using the panel weights, as suggested

in the accompanying use manuals (Curtin et al., 2002). The results are shown in

Table 4 and are similar to the estimates that use listwise deletion with baseline

weights. Panel weights are therefore not a substitute for MLE of all available data.

Simulation Study

Method

To conduct a controlled investigation of the behavior of models in which the

missing-data-mechanism assumptions are violated, we utilized simulated data.

Unlike real data, such as the NELS:88 data set, simulated data permit compari-

sons of model estimates with known population values. In addition, the mean of

the estimated standard errors can be compared with the standard deviation of the

estimates to assess bias in standard error estimates.

We simulated five equally spaced waves of continuous data using the growth

model shown in Equations 1a, 1b, and 2, but without groups or covariates, zgit and

xgi. Missing data were generated according to the survival-process model in

Equation 9a, again without groups or covariates, and the log-hazard of dropout

at each time point was negatively related to individual values of the intercept via

a single coefficient for all drop-out indicators, and the slope, by way of a second

coefficient common across all drop-out indicators. We utilized five analysis

models: (a) a traditional growth model (HLM); (b) a dual-process single-

indicator model that includes a single-indicator variable for dropping out at any

time after the first time point, as shown in Equation 9b; (c) the survival-process

model that generated the data; (d) listwise deletion; and (e) mean imputation.

Intercept and linear slope parameters were specified to resemble the NELS:88

reading achievement data.

We analyzed 1,000 data sets for each cell of a 2 � 2 � 2 design:

� two sample sizes (n ¼ 300 and n ¼ 1,000),
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� two percentages of missing data (10% and 40% dropout by the last time point), and

� two levels of dependence (weak and strong) of the drop-out process on the inter-

cept and slope. The coefficients for the intercept and slope were set to �0.1 and

�0.2 for weak dependence and �0.5 and �1.4 for strong dependence.

Data were simulated in Stata, Version 10 (StataCorp, 2007), and analyzed

using Mplus 5.1 (Muthén & Muthén, 1998–2009).

In evaluating the simulation results, we assessed bias in parameter estimates

as the percentage difference from the true parameter value, bias in the estimated

model-based standard errors as the percentage difference from the standard

deviation of the estimates, and coverage (the proportion of 95% confidence inter-

vals that contained the true parameter). In the growth model analyses, we also

report the average chi-square statistic (LR test comparing the fitted model with

saturated model), as well as the percentage of the analyses with LR-test values

above the critical value for the model degrees of freedom. Only models that con-

verged properly were included in the summaries. This was done to cull out

improper parameter estimates and standard error values. We generated extra

simulations, allowing us to use the first 1,000 cases that converged properly when

calculating the estimate summaries.

Results

Convergence. All models that ignored the missing data mechanism, including

those that utilized ad hoc approaches, converged. The two approaches that expli-

citly modeled the missing-data process resulted in some analyses in which con-

vergence was a problem. In a few cases, Mplus used a different ML estimator

(MLF) that substitutes the outer product of the gradients for a noninvertible Hes-

sian matrix to estimate standard errors (Muthén, 1998–2004, p. 32). The survival-

process drop-out models resulted in more problems with convergence because

they utilize a binary drop-out indicator at each time point that is zero before drop-

out and is missing for the time points following dropout. In particular, strong

dependence of dropout on the random coefficients, combined with a small per-

centage of dropouts (10%), led to 174 data sets, of the 1,000, with convergence

problems. Of these, 54 failed to converge and the rest resulted in either

parameters fixed at boundary values or substitution of the MLF estimator. Fewer

convergence problems occurred in the survival-process model when dropout was

40%; 22 failed to converge at all and only 5 had other problems. The single-

indicator drop-out model had fewer problems with convergence than the

survival-process model; 13 of the 1,000 replications failed to converge when

the sample was small and drop-out dependence was strong. In nearly all cases,

the parameters that caused the problems were those associated with the

drop-out indicators.

Across all models, the results from the samples of 300 and of 1,000 were very

similar, except for small differences in the standard errors, so only the large-
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TABLE 5

Mean Estimates, Estimated Bias, and Coverage; and Mean Fit Statistics for Growth Model (MAR): Simulated Samples of 1,000

Parameter

10% Missing Data 40% Missing Data

True
Small Coefficients Large Coefficients Small Coefficients Large Coefficients

Value M % Bias Cov. M % Bias Cov. M % Bias Cov. M % Bias Cov.

Means

Intercept 44.00 44.00 0.00 .95 44.01 0.03 .95 44.00 0.00 .95 44.05 0.11 .95

Slope 2.50 2.53 1.11 .91 2.62 4.92 .35 2.64 5.61 .39 3.12 24.64 .00

Variances

Intercept 68.00 67.96 �0.06 .95 67.51 �0.72 .94 67.90 �0.15 .95 67.30 �1.03 .93

Slope 2.00 1.98 �1.13 .94 1.81 �9.39 .63 1.91 �4.62 .88 1.61 �19.65 .19

Covariance 3.50 3.29 �5.98 .91 2.06 �41.08 .18 2.77 �20.86 .73 �0.86 �124.46 .00

Residual 6.97 6.97 0.04 .94 6.99 0.24 .94 6.97 0.05 .94 7.02 0.70 .94

Fit statistics (df ¼ 14)

Ave. LR(% rejected) 13.96 (6.3%) 14.52 (6.4%) 14.09 (5.3%) 17.86 (16.3%)

CFI (% � .95) 1.00 (0%) 1.00 (0%) 1.00 (0%) 1.00 (0%)

TLI (% � .95) 1.00 (0%) 1.00 (0%) 1.00 (0%) 1.00 (0%)

RMSEA (% � .05) 0.01 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0.1%)

Note: MAR¼missing at random. Small coefficients are �0.1 and �0.2 for intercept and slope, respectively; large coefficients are�0.5, and �1.4. Cov. is 95%

coverage. LR ¼ likelihood ratio statistic (model chi-square).
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sample results are shown in the tables. Any differences in results between the two

sample sizes are reported in the text.

Model-based approaches. The first growth model used MLE with an MAR

assumption. Table 5 shows parameter estimates and fit statistics from this

analysis, along with the true parameter values. The first part of the table contains

estimates, percent bias, and coverage for the parameters: intercept and slope

means, variances, and the intercept–slope covariance. The lower part of the table

shows averages of fit statistics and the percentage of LR statistics (model

chi-square) rejected.

The intercept mean and variance (Table 5) showed little bias under any

conditions, which was expected because there are no missing values at the first

time point, where the intercept is located. This was not, however, always the case

for the slope parameters. Under the best of circumstances, when dropout was

10% and dependence was weak, coverage for the slope mean and the slope–inter-

cept covariance were just slightly less than the nominal coverage value of 95%
and parameter bias was low. However, when the dependence was strong,

dropout was 40%, or both, positive bias in the slope mean estimate became

substantial (in the worst case, greater than 20%) and coverage dropped pre-

cipitously. The slope variance showed similar degrees of negative bias and

its coverage was also poor. The covariance between the intercept and slope suf-

fered the greatest negative bias, exceeding 100% (and switching sign) when both

dropout and dependence were high.

A researcher assessing model fit relies on statistics, such as the LR statis-

tic comparing the estimated model with the saturated model. When estimat-

ing the correct model, the average LR statistic should be close to the degrees

of freedom (14 in this model) and approximately 5% of the models should

have LR statistics greater than the critical value of 23.7. Table 5 shows that

the LR test rejected at substantially higher rates than expected only when

40% of the data were missing and dependence on the random coefficients

was strong. Even then, only 16% of models were rejected. Furthermore, a

researcher looking at other fit statistics commonly used in structural equation

modeling, such as Comparative Fit Index (CFI) and root mean squared error

of approximation (RMSEA), would probably conclude that the fit is ade-

quate, even if the model is rejected using the LR test (which is known to

be overly sensitive to minor misfit with large samples). If missingness

depends on random coefficients but is treated as ignorable, it is likely that

the fit statistics will not indicate a problem even when estimates

are severely biased and coverage is low. The RMSEAs for the small samples

(n ¼ 300) were slightly more likely to suggest misfit with the approximately

5% to 7% of RMSEA point estimates greater than .05.

We found very little standard error bias in the growth model. That is, most of

the standard errors for the growth model analyses were acceptably close to the

Longitudinal Modeling With Informative Attrition

20

 at Hong Kong Institute of Education on November 4, 2012http://jebs.aera.netDownloaded from 

http://jebs.aera.net


standard deviations of the estimates, although, in the smaller samples, some stan-

dard errors were slightly elevated (bias close to 7%) when dependence and the

percentage of missing data were both high. Ignoring the nonignorable missing-

data mechanism does not seem to have a strong effect on the standard errors

in this case. However, as mentioned previously, coverage is poor whenever the

parameter is estimated with bias.

The second set of analyses included a single drop-out indicator that equaled

one if the individual had dropped out at any time (Equation 9b). This approach

is easier to implement than the survival-process model that generated the data,

making it an appealing option. Table 6 gives the results of these analyses. When

10% of the data were missing and the dependence of missingness on random

coefficients was low, results showed no notable bias and the coverage was

adequate. This was even true for variances and covariances, which did not

have adequate coverage when dropout was assumed to be MAR. When drop-

out was 40% or dependence was strong, the covariance was negatively biased

by approximately 10% and coverage was also somewhat low (.89), but the

means of the other parameter estimates were within 5% of their true values

(Table 6). Coverage, in all of these cases, was adequate for the smaller sam-

ple. Finally, with 40% dropout and strong dependence, all of the slope para-

meters estimates were biased and their coverage was poor. Nonetheless, both

estimates and coverage were better than those produced by growth models

that ignored the dropout. Standard error averages were, again, all close to the

SD of the estimates (no bias greater than 6% in the small samples, and none

greater than 5% in the large samples).

The analyses that utilized the data-generating model (dual growth plus

survival model; Equation 9a) consistently resulted in parameter estimates that

were close to the true values, and coverage ranged from .93 to .97. The SEs

also did not show any substantial bias. This was the case for both large and

small samples.

Ad hoc approaches. The results of the listwise-deletion analyses are shown in

Table 7. Listwise deletion was the only approach that resulted in biased estimates

for the intercept mean. Because dropouts were more likely to have low intercepts,

the variance of the intercept was reduced and its mean was biased upward (Table

7). When more data were missing or the dependence was stronger, or both, the

slope variance and intercept–slope covariance estimates were also negatively

biased, and the slope mean was positively biased.

Finally, Table 8 shows the results of imputing test-score means to fill in miss-

ing values. Intercept means were unbiased, but slope means were biased upward

because the sample mean was substituted for what would have been lower scores.

In more severe missing-data cases, the slope bias was quite large—nearly 65%
when 40% dropped out and dependence was high. The effects of mean imputa-

tion on the random-coefficient variances were harder to predict. Despite the fact
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TABLE 6

Estimates, Bias, Coverage, and Fit Statistics for Single-Indicator Dropout Model: Simulated Samples of 1,000

Parameter

True

Value

10% Missing Data 40% Missing Data

Small Coefficients Large Coefficients Small Coefficients Large Coefficients

M % Bias Cov. M % Bias Cov. M % Bias Cov. M % Bias Cov.

Means

Intercept 44.00 44.00 0.00 .95 44.01 0.02 .95 44.00 0.00 .95 44.03 0.07 .95

Slope 2.50 2.50 0.05 .95 2.52 0.90 .93 2.55 1.84 .90 2.71 8.59 .25

Variances

Intercept 68.00 67.96 �0.06 .94 67.64 �0.53 .94 67.85 �0.23 .95 67.40 �0.88 .94

Slope 2.00 2.00 0.21 .96 1.94 �2.78 .92 1.95 �2.41 .93 1.71 �14.26 .50

Covariance 3.50 3.44 �1.58 .95 3.15 �9.95 .89 3.11 �11.08 .89 1.76 �49.61 .32

Residual 6.97 6.97 �0.01 .94 6.97 �0.04 .94 6.96 �0.10 .94 6.96 �0.08 .94

Note: Small coefficients are �0.1 and �0.2 for intercept and slope, respectively; large coefficients are �0.5, and �1.4. Cov. is 95% coverage.
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TABLE 7

Estimates, Bias, Coverage, and Fit Statistics for Listwise Deletion: Simulated Samples of 1,000

Parameter True Value

10% Missing Data 40% Missing Data

Small Coefficients Large Coefficients Small Coefficients Large Coefficients

M % Bias Cov. M % Bias Cov. M % Bias Cov. M % Bias Cov.

Means

Intercept 44.00 44.73 1.66 .24 45.43 3.26 .00 46.94 6.68 .00 48.75 10.80 .00

Slope 2.50 2.57 2.84 .74 2.67 6.67 .11 2.79 11.62 .01 3.05 22.12 .00

Variances

Intercept 68.00 63.26 �6.97 .65 52.38 �22.98 .00 54.08 �20.48 .02 36.29 �46.64 .00

Slope 2.00 1.96 �2.08 .93 1.79 �10.44 .57 1.87 �6.72 .82 1.57 �21.47 .13

Covariance 3.50 3.02 �13.82 .80 1.66 �52.61 .00 2.10 �39.85 .22 �0.20 �105.66 .00

Residual 6.97 6.97 �0.01 .94 6.97 �0.02 .94 6.97 �0.05 .94 6.98 þ0.10 .94

Fit statistics (df ¼ 14)

Ave. LR (% rejected) 14.03 (5.2%) 14.14 (6.0%) 14.22 (5.3%) 14.19 (5.2%)

CFI (% � .95) 1.00 (0%) 1.00 (0%) 1.00 (0%) 1.00 (0%)

TLI (% � .95) 1.00 (0%) 1.00 (0%) 1.00 (0%) 1.00 (0%)

RMSEA (% � .05) 0.01 (0%) 0.01 (0%) 0.01 (0.2%) 0.01 (0.1%)

Note: Small coefficients are �0.1 and �0.2 for intercept and slope, respectively; large coefficients are �0.5, and �1.4. Cov. is 95% coverage. LR ¼ likelihood

ratio statistic (model chi-square).
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TABLE 8

Estimates, Bias, Coverage, and Fit Statistics for Mean Imputation: Simulated Samples of 1,000

Parameter True Value

10% Missing Data 40% Missing Data

Small Coefficients Large Coefficients Small Coefficients Large Coefficients

M % Bias Cov. M % Bias Cov. M % Bias Cov. M % Bias Cov.

Means

Intercept 44.00 43.97 �0.06 0.95 44.24 0.54 0.84 43.99 �0.01 0.94 45.12 2.53 0.00

Slope 2.50 2.75 10.14 0.01 3.00 20.06 0.00 3.52 40.98 0.00 4.12 64.85 0.00

Variances

Intercept 68.00 68.05 0.08 0.95 59.96 �11.83 0.19 64.05 �5.81 0.73 42.68 �37.23 0.00

Slope 2.00 2.31 15.49 0.45 2.45 22.55 0.10 2.88 44.13 0.00 2.49 24.46 0.01

Covariance 3.50 0.20 �94.32 0.00 �1.89 �154.00 0.00 �6.37 �281.96 0.00 �6.14 �275.55 0.00

Residual 6.97 8.41 20.71 <0.01 9.57 37.31 0.00 10.81 55.16 0.00 12.28 76.20 0.00

Fit statistics (df ¼ 14)

Ave. LR (% rejected) 27.49 (88.2%) 145.28 (100%) 114.29 (100%) 996.34 (100%)

CFI (% � .95) 1.00 (0%) .97 (2.7%) .97 (1.6%) .72 (100%)

TLI (% � .95) 1.00 (0%) .98 (0%) .98 (0%) .80 (100%)

RMSEA (% � .05) .03 (20.5%) .10 (100%) .08 (100%) .26 (100%)

Note: Small coefficients are �0.1 and �0.2 for intercept and slope, respectively; large coefficients are �0.5, and �1.4. Cov. is 95% coverage. LR ¼ likelihood

ratio statistic (model chi-square).
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that no data were missing at the first time point, intercept variances were nega-

tively biased if the proportion of missingness or dependence were high, and, in

general, the slope variances were biased upward. The covariance was severely

negatively biased; in the worst case, it exceeded �275%. Finally, neither ad hoc

approach showed any substantial standard error bias when compared with

standard deviations of the estimates.

Discussion

NELS:88

This study investigated the results of assuming that missing data due to

student dropout are ignorable in an educational setting. Our specific concern was

the effect of school dropout on modeling of learning trajectories. We began by

modeling high school reading achievement trajectories using the NELS:88 read-

ing achievement data. We felt that the missing data of individuals who dropped

out of school might be NMAR if their dropout resulted from poor progress during

high school. We found little evidence of nonignorable missingness after adding a

risk-factor index as a covariate.

Estimating an NMAR missing-data model can be viewed as a type of sensitiv-

ity analysis (e.g., Diggle & Kenward, 1994); changes in parameter values that

result from adding the missingness-model suggest that the dropout is NMAR.

Unchanged estimates suggest, but do not guarantee, that the missing data are

MAR, conditional on the risk-factor covariate.

Although ad hoc approaches to dealing with missing data have been criticized

many times in the past (e.g., Enders, 2001; Peugh & Enders, 2004), such

approaches are still found in recent educational research papers. Because of this,

we also analyzed the data using two of the more common ad hoc methods

traditionally found in the educational literature: listwise deletion and mean impu-

tation. The results when these approaches were used differed from the model-based

approaches even when NELS:88 panel survey weights, which are designed to cor-

rect for nonresponse, were used. In general, both approaches gave an appearance of

greater academic growth during high school than the model-based methods. In our

analyses, these differences became increasingly severe as the number of risk fac-

tors increased (see Figures 2 and 3). These methods also resulted in large differ-

ences in the estimated variances and covariances (Table 4).

Simulated Data

The simulation was useful for two reasons. With simulated NMAR data, we

were able to assess bias in parameter estimates when an incorrect approach was

used to deal with the missing data. In addition, the simulation allowed us to

explore what proportion of the data had to be missing, as well as how strong the

dependence of the missingness on the random coefficients had to be, before
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treating an NMAR missing-data process as MAR would begin to result in serious

bias. We found that the limits depend on the research questions. For example, a

researcher solely interested in the mean trajectories might be able to ignore as

much as 40% nonignorable missing data, as long as the dependence of the miss-

ingness on the random coefficients is low or, equivalently, the MAR assumption

is not severely violated. When the MAR assumption is more severely violated,

however, the slope mean estimate will be biased if the proportion of missingness

is high. Moreover, if variances or covariances are of substantive interest, signif-

icant bias begins to show up with as little as 10% missingness when dependence

is strong, or with 40% missingness when dependence is weak.

A negatively biased intercept–slope covariance, in particular, might be of con-

cern when initial scores are actually positively correlated with slopes, as was the

case in the NELS:88 analysis. The positive correlation suggested that students

who start at an academic disadvantage are likely to end school at an even greater

disadvantage, and could potentially benefit from a targeted intervention. If the

covariance bias is so great that the direction of the correlation is reversed, as

occurred in several of the simulation analyses, there might be no impetus to inter-

vene—the gap would appear to be closing on its own.

As we did in the NELS:88 analyses, we also estimated the simulated models

using listwise deletion and mean imputation. Both of these methods assume that

data are MCAR. The effect of violating this assumption can be seen in the results

of the simulation study. Biases can be severe—as great as �275% when mean

imputation was used under the most demanding of conditions (40% missing,

strong dependence on the random effects).

Conclusions

These analyses showed that treating missingness as ignorable when, in fact, it

depends on the random coefficients, can result in biased estimates, especially for

the estimated variances and covariances. When ad hoc methods such as listwise

deletion and mean imputation are used, the bias can be quite severe and may not

be entirely predictable. Many other ad hoc methods were not discussed in this

article, but may also cause seriously distorted estimates. Examples are last obser-

vation carried forward and, similar to the listwise deletion approach used in this

article, deleting all individuals without some arbitrary minimum number of time

points, such as two or three. Unfortunately, the latter approach is quite common

because many researchers seem to think that individuals with only one observa-

tion cannot be included in the analysis.

Because there is no way to know the nature of the missing-data process, we

recommend using maximum likelihood estimators and investigating the sensitiv-

ity of the estimates to the MAR assumption by fitting NMAR models, as we did

here with the NELS:88 analysis. This approach has been recommended by

Beunckens, Molenberghs, Thijs, and Verbeke (2007), Molenberghs et al.
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(2004), Xu and Blozis (2011), and others. However, NMAR models, themselves,

depend on unverifiable assumptions and should not be relied on without checking

for sensitivity to violations of their assumptions (Kenward, 1998; Little, 1995;

Verbeke, Molenberghs, Thijs, Lesaffre, & Kenward, 2001). In particular, the

selection models of this article are sensitive to distributional assumptions (see,

e.g., Little, 1994, and references therein), such as the assumption of multivariate

normality of the latent variables, as well as the conditional independence

assumption and the requirement that the missing-data model is correct. We also

strongly suggest that NMAR models be based on theory, as was the case in our

analysis, and not used in an exploratory fashion (see Molenberghs et al., 2008), as

the wrong model can yield misleading results. We join with other researchers in

recommending that individuals designing longitudinal studies get as much infor-

mation as possible on variables that have been shown to predict missingness

(Collins et al., 2001; Diggle & Kenward, 1994; Little, 1995; Schafer & Graham,

2002); the more this type of information is used in the analysis, the more likely

the missing data are to be MAR.

Finally, there exists controversy over whether test scores from dropouts

should even be considered missing. Under similar circumstances, Zhang and

Rubin (2003) present an alternative model based on an argument that data miss-

ing due to dropout are not MNAR, but undefined. This is a complex issue, and

will probably depend on the research question.

As longitudinal research is increasingly used, missing data will become a

more common issue and missing-data problems will require more attention than

they have in the past. Data collection for the NELS:88 was well funded and few

individuals were lost to follow-up. States enacting longitudinal student tracking

systems are likely to have greater problems with missing data, as the students

who drop out of school will most likely not be assessed. Students moving to

another state may also be lost to follow-up. It is our hope that the results we have

shown here will help alert individuals who are engaged in such data collection

about the need for careful attention to the information that is gathered, and will

inform those who analyze the data to the need to use appropriate methods for

dealing with the missing data in longitudinal analyses.
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Appendix: Mplus Syntax

Mplus Growth Model Syntax (MAR) 

TITLE: Nels:88 Conditional Growth Model with Ethnicity Groups 

DATA: FILE IS nels.txt; 

VARIABLE:
NAMES ARE id sch_id sstratid byqwt minority  
male race asian latino black amerind white unknown 
byrisk birthyr dropout dof1 dof2 rdirtd1 rdirtd2 rdirtd3 
rdmimp1 rdmimp2 rdmimp misread missrace; 

IDVAR IS id; 
USEVARIABLES ARE rdirtd1 rdirtd2 rdirtd3 byrisk; 

MISSING ARE all (-99); 
STRATIFICATION IS sstratid; 
CLUSTER IS sch_id; 
WEIGHT IS byqwt; 

CLASSES IS ethnicty(2); 
KNOWNCLASS IS ethnicity(minority=0 minority=1); 

ANALYSIS: 
TYPE IS COMPLEX MIXTURE; 

MODEL:
%OVERALL%
int slope quad | rdirtd1@0 rdirtd2@2 rdirtd3@4; 
quad@0;
rdirtd1(1); rdirtd2(1); rdirtd3(1);  
int ON byrisk; 
slope ON byrisk; 

%ethnicty#1% 
int; slope; int WITH slope; 
[int slope quad]; 
int ON byrisk; 
slope ON byrisk; 

%ethnicty#2% 
int; slope; int WITH slope; 
[int slope quad]; 
int ON byrisk; 
slope ON byrisk; 

OUTPUT: TECH1 TECH3 TECH4 STANDARDIZED SAMPSTAT RESIDUAL; 

SAVEDATA: 
RESULTS = results.nels.risk.txt; 
FILE IS data.nels.risk.txt; 
SAVE = FSCORES; 

Data file is in folder with Mplus input file

Names of all of 
the variables in 
the data 

This tells Mplus to include ID variable in any individual-level output
Names of the variables in the analysis 

MISSING ARE identifies missing-data code (-99) 

These next three commands handle the 
complex survey design, including weights 

These two commands tell Mplus to estimate this 
multiple-group model as a mixture model with two 
classes that are idenfified by the variable, ethnicty

COMPLEX means complex survey design 
MIXTURE indicates a mixture model 

%OVERALL% is required for a mixture model. Under 
it is the full model for both classes. The variance 
of the quadratic slope is fixed to zero
the residual variances are fixed equal across the 
three timepoints by the number in parentheses (1)

)(q@0

Intercept and linear slope (int and slope) are 
regressed on the risk-factors variable (byrisk)

These two sections specify what is constrained to 
be equal, versus free to differ, between groups. 
Parameters in square brackets refer to means; 
those outside of brackets refer to variances. Both 
are permitted to vary across groups.

RESULTS = saves the parameter estimates into the text 
file named. The order of the estimates is in the output 
file. Save = FSCORES saves the individual intercepts and 
slopes (factor scores) along with the variables in the 
analysis.
IS, ARE, and “=” are interchangeable in Mplus. 
Mplus code and variable names are not case sensitive. 
All commands must end with a semicolon.

and 
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Mplus Growth Model Syntax with Dropout (NMAR) Model 

TITLE: Nels:88 Conditional Growth Model with Ethnicity Groups and Dropout 

DATA: FILE IS nels.txt; 

VARIABLE:
NAMES ARE id sch_id sstratid byqwt minority  
male race asian latino black amerind white unknown 
byrisk birthyr dropout dof1 dof2 rdirtd1 rdirtd2 rdirtd3 
rdmimp1 rdmimp2 rdmimp misread missrace; 
IDVAR IS id; 
USEVARIABLES ARE rdirtd1 rdirtd2 rdirtd3 byrisk dropout; 
CATEGORICAL is dropout; 
MISSING ARE all (-99); 
STRATIFICATION IS sstratid; 
CLUSTER IS sch_id; 
WEIGHT IS byqwt; 
CLASSES IS ethnicty(2); 
KNOWNCLASS IS ethnicity(minority=0 minority=1); 

ANALYSIS: 
TYPE IS COMPLEX MIXTURE; 
ALGORITHM = INTEGRATION; 
STARTS = 50 25; 
PROCESSOR = 8(STARTS); 

MODEL:
%OVERALL%
int slope quad | rdirtd1@0 rdirtd2@2 rdirtd3@4; 
quad@0;
rdirtd1(1); rdirtd2(1); rdirtd3(1);  
int ON byrisk; 
slope ON byrisk; 
dropout ON byrisk; 
[dropout$1](6); 

%ethnicty#1% 
int; slope; int WITH slope; 
int ON byrisk; 
slope ON byrisk; 
dropout ON byrisk; 
%ethnicty#2% 
int; slope; int WITH slope; 
int ON byrisk; 
slope ON byrisk; 
dropout ON byrisk; 

OUTPUT: TECH1 TECH3 TECH4 STANDARDIZED SAMPSTAT RESIDUAL; 
SAVEDATA: 
RESULTS = results.nels.risk.dropout.txt; 
FILE IS data.nels.risk.dropout.txt;
SAVE = FSCORES; 

dropout is an indicator that 
the individual dropped out at 
any point in high school

Observed categorical outcomes (endogenous variables) 
must be described as such

ALGORITHM = INTEGRATION is needed with a 
categorical distal outcome (dropout).

STARTS = tells Mplus to do multiple starts from 
random places in the parameter space as a 
precaution against converging to a local maximum. 
It will do 50 starts up to 10 iterations and continue 
the best 25 of those to convergence.

PROCESSOR = tells Mplus how many 
processors (or cores) available in the 
computer and (STARTS) tells it to spread 
the random starts among processors (for 
added speed).

dropout was regressed on the risk index 
(byrisk) to control for direct effects of 
risk factors on the probability of 
dropping out.

[dropout$1] refers to the 
threshold of the binary variable 
(fixed equal across groups)
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Mplus Growth Model Syntax with Survival-Process (NMAR) Model 

TITLE: Nels:88 Conditional Growth Model with Ethnicity Groups and SP Dropout 
DATA: FILE IS nels.txt; 
VARIABLE:
NAMES ARE id sch_id sstratid byqwt minority  
male race asian latino black amerind white unknown 
byrisk birthyr dropout dof1 dof2 rdirtd1 rdirtd2 rdirtd3 
rdmimp1 rdmimp2 rdmimp misread missrace; 
IDVAR IS id; 
USEVARIABLES ARE rdirtd1 rdirtd2 rdirtd3 byrisk dof1 dof2; 
CATEGORICAL is dof1 dof2; 
MISSING ARE all (-99); 
STRATIFICATION IS sstratid; 
CLUSTER IS sch_id; 
WEIGHT IS byqwt; 
CLASSES IS ethnicty(2); 
KNOWNCLASS IS ethnicity(minority=0 minority=1); 
ANALYSIS: 
TYPE IS COMPLEX MIXTURE; 
ALGORITHM = INTEGRATION; 
STARTS = 50 25; 
PROCESSOR = 8(STARTS); 

MODEL:
%OVERALL%
int slope quad | rdirtd1@0 rdirtd2@2 rdirtd3@4; 
quad@0;
rdirtd1(1); rdirtd2(1); rdirtd3(1);  
int ON byrisk; 
slope ON byrisk; 
dropout ON byrisk; 
dof1 ON int slope byrisk; 
dof2 ON int slope byrisk; 
[dof1$1](8); [dof2$1](9); 
%ethnicty#1% 
int; slope; int WITH slope; 
int ON byrisk; 
slope ON byrisk; 
dof1 ON slope(3); 
dof2 ON slope(3); 
dof1 on int(2); 
dof2 on int(2); 
dof1 on byrisk(6); 
dof2 on byrisk(7); 
%ethnicty#2% 
int; slope; int WITH slope; 
int ON byrisk; 
slope ON byrisk; 
dropout ON byrisk; 
dof1 ON slope(3); 
dof2 ON slope(3); 
dof1 on int(2); 
dof2 on int(2); 
dof1 on byrisk(61); 
dof2 on byrisk(71); 

OUTPUT: TECH1 TECH3 TECH4 STANDARDIZED SAMPSTAT RESIDUAL; 
SAVEDATA: RESULTS = results.nels.risk.surv.txt; 
FILE IS data.nels.risk.surv.txt; 
SAVE = FSCORES;

dof1 and dof2 are indicators 
that the individual dropped out 
before 10th or 12th grades, 
respectively.

Regressions of dof1 and dof2 on the 
growth parameters were assumed to 
be equal for 10th and 12th grades, but 
were tested across group. The 
regressions on the risk index was not 
assumed to be equal across time or 
across groups
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