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An item response theory model for dealing with test speededness is proposed. The model consists
of two random processes, a problem solving process and a random guessing process, with the random
guessing gradually taking over from the problem solving process. The involved change point and change
rate are considered random parameters in order to model examinee differences in both respects. The
proposed model is evaluated on simulated data and in a case study.
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1. Introduction

Test speededness has been modelled using two alternative item response theory (IRT) ap-
proaches both of which assume a single point at which the examinee’s response strategy switches
to an alternative response strategy due to time limits being reached for the test (Bolt, Cohen &
Wollack, 2002; Yamamoto, 1987; Yamamoto & Everson, 1997). In this paper we propose an
alternative model in which the response strategies switch more gradually. We show that this
alternative model is in fact a general case which subsumes both previous explanations of speed-
edness and provides a more realistic view of test speededness. In addition, this alternative model
provides an opportunity to consider modelling other psychological processes, particularly ones
which may change gradually, such as learning or change in attitudes or preferences.

According to the latent trait approach, examinees are characterized by a possibly vector
valued random variable @, often called the ability. The ability is not directly observable, and one
typically infers about it through a sequence Y’ = (Y7, ..., Y) of scored items (correct/incorrect,
coded Y; =1 and Y; = 0, respectively) usually referred to as the ‘test’, intended to measure ©.
Observed values of Y and Y; will be denoted by y and y;, respectively. In the latent trait approach
one postulates a model for the random vector Y conditional on a realization § of @, i.e. one
specifies the conditional distribution P(Y = y|@). From this model one derives the univariate
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conditional probability functions P (Y; = y;|0), with P;(0) := P(Y; = 1|0) = E(Y;|0), called the
item characteristic curve (ICC), giving the probability that a randomly selected examinee with
ability @ will answer item i correctly, as well as the joint marginal model for Y,

P(Y=y)=/-~-/ P(Y =y|0)dG(9),
R JR

where G denotes the joint distribution function of @. In classical IRT models one usually as-
sumes: (i) local item independence, i.e. conditional on @ = @ all responses in Y are independent:

1
P(Y=ylo) =[] P(Y¥i=yil0)

i=1

1
=[1E® 1 -FP®)]

i=l1

for all possible vectors y (2! in total), leading to the ‘usual’ IRT equation

1
P(Y:y):A...A{H[Fi(a)]yi[l — Pl-(o)]‘*y" dG(9);
i=1

(ii) © to be one-dimensional; and (iii) a 1PL (Rasch, 1960), 2PL (Birnbaum, 1968) or 3PL
(Birnbaum, 1968) model for P;(0).

In case the responses are driven by more factors or latent traits than those included in the
model, say in 8, not all dependencies will be properly accounted for by the model under consid-
eration, making the validity of the local item independence assumption questionable. It is well
known that the Rasch model, and IRT models in general, are not robust with respect to viola-
tions of the local item independence assumption. The inclusion of items with local item depen-
dence (LID) may result in contaminated estimates of test reliability, person and item parameters,
standard errors and equating coefficients, see, for instance, Yen (1984), Thissen, Steinberg and
Mooney (1989), Sireci, Thissen and Wainer (1991), Yen (1993), Wainer and Thissen (1996),
Lee, Kolen, Frisbie and Ankenmann (2001) and Tuerlinckx and De Boeck (2001). Next to this,
some research has been devoted to the development of tests or indices for the detection of viola-
tions of the conditional independence assumption, see van den Wollenberg (1982), Rosenbaum
(1984, 1988), Yen (1984), Stout (1987, 1990), Stout et al. (1996), Chen and Thissen (1997),
Douglas, Kim, Habing and Gao (1998) and Ip (2001). We refer to Bradlow, Wainer and Wang
(1999) and Tuerlinckx and De Boeck (2004) for possible approaches to modelling local item
dependencies.

Yen (1993) and Ferrara, Huynh and Michaels (1999) provide a detailed taxonomy of pos-
sible reasons for the existence of local item dependency. One of the most prevalent causes in
educational testing is test speededness. Whenever tests are administered within fixed time limits
there is the possibility that some examinees will have insufficient time to answer all questions. It
is well known that the speed of performing a task is one of the more noticeable aspects in which
individuals differ with respect to each other, besides the differences in the ability to perform a
task correctly (Yamamoto & Everson, 1997). Speededness is typically an inadvertent source of
LID in that the speed with which an examinee responds is not an important part of the construct
of interest (Lord & Novick, 1968). Speededness manifests itself in that LID is usually present on
items at the end of the test and examinees affected by speededness receive ability estimates that
underestimate their true levels. In addition, speededness may cause certain items, particularly
those administered late in the test, to have poorly estimated parameters (Douglas et al., 1998;
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Oshima, 1994) making it difficult to maintain a scale over time (Wollack, Cohen & Wells, 2003).
For multiple choice tests where the score is a function of the number of correctly answered items,
a sensible strategy for an examinee running out of time is to quickly guess the answers to the re-
maining items. In this way the number of correct answers, and hence the score, can be increased
by chance alone. From the above discussion it should be clear that for some examinees, the re-
sponse profiles will, besides the ability to answer the item correctly, also reflect an influence due
to the limited time test administration, i.e. responses, typically at the end of the test, will also be
driven by test speededness effects. Traditional IRT models did not explicitly incorporate speed-
edness in the construct of ability, which lead to contaminated estimates for the ability to perform
a task correctly and for the item difficulty parameters of end-of-test items.

Item response theory models dealing with test speededness are relatively new. The hybrid
model of Yamamoto and Everson (1997) uses multiple IRT models to describe the behaviour of
examinees. A classical item response model is valid throughout most of the test but end-of-test
items are answered randomly by some subset of examinees. The model identifies M possible
latent classes, one for whom an item response model is valid for all items, and M — 1 classes
with an item response model describing answers to the first / — m items and random guessing
on the last m items, m =1, ..., M — 1. Formally,

exple; (05" )

, 1 <I—m,
P (00 = 1 Trexpler 05" —f)
Ci, i>1—m,
with m =0,..., M — 1. Clearly, speededness is unlikely to be so straightforward, as not all

students will switch immediately to random guessing beyond some point.

Bolt et al. (2002) extend the mixture Rasch model proposed by Rost (1990) to distinguish
latent classes of examinees according to the existence of speededness in their item response
patterns. Ordinal constraints are imposed on the item difficulty parameters across classes so as
to distinguish a class having no speededness effects from a class whose responses are affected
by speededness. In particular, for items early in the test, the item difficulty parameters are con-
strained to be equal in the two classes; however, the item difficulty parameters of end-of-test
items in the speeded class are constrained to be larger than the respective item difficulty pa-
rameters in the nonspeeded class. Let g denote a class indicator with g = 0, 1 referring to the
nonspeeded and speeded class, respectively, and let k denote the first item where the examinees
experience the effects of test speededness. The mixture Rasch model can then be stated as

exp(6;" — B

® (p@
P& () = :
o) 1+exp@f — )

with
Y =" fori <k,

/31.(0) < ,Bl.(l) fori > k.
The item difficulty estimates obtained in the nonspeeded class provide more suitable estimates
of the Rasch difficulties of end-of-test items than the difficulties estimated using all examinees.
Although this model has worked quite well at identifying test speededness (and has subsequently
been extended to model speededness in the three-parameter model Bolt, Mroch & Kim, 2003),
it does not allow for different examinees becoming speeded at different points in the test. Since
such differences are plausible, in this paper, we propose a model that provides for this kind of
transition as a random effect within examinees.
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The remainder of this paper is organized as follows. In the next section we propose an
item response model that accommodates the disadvantages of the hybrid model and the mixture
Rasch model. The model can be seen as consisting of two random processes, a problem solving
process (a classical IRT process) and a random guessing process, with the random guessing
gradually taking over from the problem-solving process. In this paper we use the 3PL model
for the problem solving component of the model. The involved change point and change rate
are considered random parameters in order to model examinee differences in both respects. The
model was first formulated by Wollack and Cohen (2004) as a model to simulate speededness
data, but it will be treated here as a full-fledged model for test data which can also be estimated.
In Section 3 we evaluate the performance of the model on the basis of a simulation study. The
final section reports the results of applying the model to a mathematics placement test.

2. A Model for Speeded Test Data with Gradual Process Change

In this section we propose a new item response model for dealing with speeded test data.
Under the model, responses to items early in the test are governed by a 3PL model. Beyond
some point the success probability gradually decreases and eventually reduces to the success
probability under random guessing. Both change point and change rate are examinee specific.

Using p as an examinee index, p =1, ..., P,and i as an item index, i =1, ..., I, the model
can be stated as

Ypi |0p’ Np, Ap ~ Bern(mwy;)

with

. A
. ! r
7Tpi=Ci+(1_Ci)Pi(elJ)mm{lv[l_ (7—7717)} } (1
where ¢; is a random guessing parameter, 17, (1, € [0, 1]) represents the speededness point and
Ap (Ap = 0) the speededness rate of examinee p, and P;(6),) given by the 2PL model, i.e.

exp(a; (0p — Bi))
1 +exp(ei(6p — Bi))

Pi(0p) =

The speededness point parameter 7, identifies the point in the test, expressed as a fraction of
the number of items, where examinee p first experiences an effect due to speeding. For items
with i < 7,1 there is no effect of speeding. Once the examinee passes his/her speededness point,
i/l —n) is positive, resulting in a decrease of min{1, [1 — (/I — 7 p)])w)}, The rate of decrease
of min{l, [1 — (i/] —n p)])‘l’} is controlled by the parameter A, with larger A, values resulting
in a faster decrease. In Figure 1 we illustrate the role of 1 and A by plotting the decay function
min{1, [1 — (x — n)]*} for some values of 7 and A.

The rationale for the proposed model is as follows. Denote P; (), Ap) =min{l, [1 — (i/] —
n ,,)]}‘P }. When examinee p encounters item i, he/she answers according to either a 3PL process
or arandom guessing process, with probabilities P; (1, A) and 1 — P; (), A ), respectively. Un-
der random guessing the answer is correct with probability ¢;. Under the problem solving process
the examinee knows the answer with probability P;(6)); if ignorant, the examinee guesses at ran-
dom. In Figure 2 we visualize the model with a decision tree. Clearly,

P(Ypi = 1|9p7 NMps )\p) = Pi(npy )\p)Pi(Qp) + Pi(np, )‘p)[l - P (917)]6',' +[-F (npa )\p)]ci’

which simplifies to (1).
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FIGURE 1.
(a) min{l, [1 — (x — 17)])‘} for A =5, n = 0.5 (solid line) and n = 0.75 (broken line); (b) min{l, [l — (x — 77)])‘} for
n =0.25, > =1 (solid line), » =2 (broken line) and X = 0.5 (broken—dotted line).
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FIGURE 2.

Decision tree representation of speededness model.

Model (1) has some interesting limiting cases:

e if [1 — (i/I —n)]* =0 for i/I > n (this corresponds to the limiting case A — +00),
then (1) reduces to one of the speeded classes in the hybrid model, and speededness is
modelled as random guessing

e incase A =0 or n = 1, the proposed model reduces to the 3PL model

e incase n =0 and A > 0, the examinee guesses at random at least to some degree from the
first item up to the final item

e as with the 3PL model, ¢; is the horizontal asymptote for 6 — —oo.

Note that the 3PL model is obtained as a limiting case for A = 0 (whatever the value of 1) or
for n = 1 (whatever the value of 1) and hence is not uniquely identified within the proposed test
speededness model. This of course may entail estimation difficulties, such as nonconvergence
of the optimization algorithm or ill-conditioned observed information matrices, when model (1)
is fitted to data that are not affected by test speededness. Estimation difficulties can also be
expected if one is close to the identification limit, i.e. when test speededness effects come in very
late. This is, of course, not completely unexpected since in this case the information available
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for the estimation of the test speededness parameters is rather limited. We will illustrate this issue
in Section 3.

As is usual in IRT, the parameter reflecting the examinee’s ability to perform the task cor-
rectly is assumed to be normally distributed. The standard deviation for the ability distribution
is fixed at the value of one to avoid the identification problem that otherwise would arise due to
the presence of discrimination parameters. For the speededness parameters 7, and A, we make,
without loss of generality, the following distributional assumptions:

np ~ Beta(a, B),
Ap ~log N (ux, of).

The marginal distribution functions of 6,, n, and A, will be denoted by G, G2 and G3, re-
spectively. Besides these marginal distribution functions we also have to specify the dependence
structure. This will be done by a copula function C; see Appendix 2 for more information on
copulas. By using Sklar’s theorem (Sklar, 1959) we have that the function G, defined as

G(O,n,4)=C(G1(0), G2(n), G3(A)),

is a joint distribution function, with marginal distribution functions G, G, and G3. Intuitively,
a copula links marginal distribution functions together into a joint distribution function.

Concerning estimation, we restrict the discussion to the marginal maximum likelihood
method. In the marginal maximum likelihood method the random effects are integrated out and
the resulting likelihood is maximized with respect to the unknown parameters. Under (1), denot-
ing the vector of unknown parameters by &, the marginal likelihood function is simply

P 1 0o 1
L(E)=]‘[/R/O/O [T PYoi = pil6p, 1, 2) AG B 1 2. @)
p=1 i=1

The integrals involved in (2) can be numerically approximated by a quadrature method and
the optimization can be performed using a standard Newton—Raphson algorithm. The SAS
NLMIXED procedure fits nonlinear mixed models with multivariate normal random effect distri-
butions. However, as long as G in (2) is characterized by a normal dependence structure (copula),
NLMIXED can be used to fit model (1), whatever the functional form of the (continuous) mar-
ginal random effect distribution functions. Indeed, as shown in Proposition 1 (see Appendix 2), in
case of a normal dependence function, appropriately chosen compositions of probability integral
transforms and inverse probability integral transforms of the marginal distributions yield a mul-
tivariate normal distribution for the transformed random effects. Appendix 1 contains example
SAS code. As an alternative to the SAS NLMIXED procedure, the authors developed a Fortran
program to maximize (2) in the presence of a normal copula function. This program is built
around the NAG library subroutines DO1BBF and DO1FBF for the numerical integration and
EO04UCEF for the optimization (NAG, 1993). Under the test speededness model (1), and assuming
a multivariate normal copula function, the vector of the unknown parameters is given by

2
g/:(ﬂls'~'1ﬂ11a11'~-1alvcls'~-1clsﬂlvo—k3avﬁsp9nvp@)\,’pr]}\)’

where pyy is used to denote the correlation between random variables X and Y. In some cases,
besides &, the person specific effects 6, n, and X, are also of special interest. Estimates of these
parameters can be obtained from an empirical Bayes analysis of the postulated model. These em-
pirical Bayes estimates then allow us to identify examinees affected by test speededness effects.
More information on empirical Bayes estimation can be found in Appendix 3.



Y. GOEGEBEUR, P. DE BOECK, J.A. WOLLACK, AND A.S. COHEN 71

3. Simulation Study

In this section we discuss the results of a small simulation study. Four data sets, each con-
taining responses of 1000 examinees on 80 items were generated. The parameter values were
taken from the mathematics test case study discussed in Section 4, this to ensure realistic settings
for the simulation. This includes dependent examinee ability, speededness point and rate random
effects. We examined the effect of manipulating the parameters « and S of the test speededness
point distribution. Sample 1 was generated under model (1) with the parameter values from the
mathematics test data. Sample 2 was generated under model (1) with speededness point parame-
ters @ = 2 and B = 2, and Sample 3 was generated with speededness point parameters o« = 9 and
B = 2. Under these simulation conditions, E(#,) = 0.31 for Sample 1, 0.50 for Sample 2 and
0.82 for Sample 3. Finally, a fourth sample was generated from a 3PL model, i.e. no speededness
was generated. All computations were performed with the Fortran/NAG implementation. Com-
putation times varied between 50 and 100 hours per sample (on an Intel Pentium M, 2.13 GHz,
1 GB of RAM).

The effect of test speededness is illustrated in Figure 3(a), Figure 4(a), Figure 5(a) and
Figure 6(a), where we plot the empirical proportions correct scores (solid lines) together with the
theoretical ones (broken lines), given by

E(Yi) = E[E(Ypil0p. 1p. 4p)]
=E(pi)

1 e’}
=c+(1—c>/];§/0/0 POy P )8 Ops s 2p) dpdny dipe (3)

in case of (1), and by

E(Ypi)=c+( —C)/Rpi(Qp)gl(é’p)dG,a,

where g1 denotes the standard normal density function, in the case of the 3PL model. Clearly,
test speededness decreases the probability of a correct answer for end-of-test items. Of course,
the ultimate effect depends on the distribution of the speededness point and rate.

The fit of the speededness model can be evaluated by comparing the observed proportion
correct scores with their model-based estimates, obtained by plugging the maximum likelihood
estimates for the model parameters into (3). These estimated model-based proportions are drawn
by broken—dotted lines in Figure 3(a), Figure 4(a), Figure 5(a) and Figure 6(a). Clearly, the
estimated and empirical proportions correct scores are almost indistinguishable, indicating a very
good fit of the model.

In Figure 3(b) and (c) we illustrate the effect of test speededness on the estimates for the
item difficulties 8" = a; ;. For items early in the test, the difficulty estimates obtained with the
test speededness model (solid line) and the 3PL model (broken line) agree quite well. However,
after a certain point the estimates obtained from fitting a 3PL model begin to diverge from those
obtained under the speededness model. As is clear from the figures, ignoring test speededness
causes upward biased estimates of the item difficulty estimates, a result that is consistent with the
IRT literature. In Figure 3(d) and (e) we show the theoretical density functions (solid lines) of the
speededness point and speededness rate, respectively, together with the fitted densities (broken
lines). In Figure 4, Figure 5 and Figure 6 we present the corresponding estimation results for
Sample 2, Sample 3 and Sample 4, respectively. As expected, in case the speededness effects
come in later, the item difficulty estimates obtained under the 3PL model not only diverge later,
but also to a lesser extent, from those obtained under (1). Moreover, the information available
to estimate the speededness parameters is rather limited in case speededness effects come in late,
leading to estimates showing high sampling variability, see, for instance, Figure 5(d).
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FIGURE 3.

Results for Sample 1: (a) proportion of correct scores versus item number: empirical (solid line), theoretical with true
parameter values (broken line), theoretical with estimated parameter values (broken—dotted line); (b) estimated item diffi-
culty parameters under (1) (solid line) and the 3PL model (broken line); (¢) difference between item difficulty estimates;
(d) density function of n: theoretical (solid line) and fitted (broken line); and (e) density function of A: theoretical (solid
line) and fitted (broken line).

In Table 1 we compare model (1) with the 3PL model in terms of —2log L, the Akaike
information criterion (AIC) and the Schwarz Bayes information criterion (BIC). The 3PL model
is nested in the test speededness model and hence its values for —21log L will always be larger
than the ones for model (1). For all cases considered, AIC and BIC select the appropriate model,
i.e. the test speededness model for Sample 1, Sample 2 and Sample 3 and the 3PL model for
Sample 4.
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FIGURE 4.
Results for Sample 2: (a) proportion of correct scores versus item number: empirical (solid line), theoretical with true
parameter values (broken line), theoretical with estimated parameter values (broken—dotted line); (b) estimated item diffi-
culty parameters under (1) (solid line) and the 3PL model (broken line); (c) difference between item difficulty estimates;
(d) density function of n: theoretical (solid line) and fitted (broken line); and (e) density function of A: theoretical (solid
line) and fitted (broken line).

4. Application to Mathematics Placement Test

Data from Form 1 of the 2004 administration of a mathematics placement test at a large,
selective Midwestern university were analyzed for test speededness using model (1). The data
set contains response profiles of 3447 students. The mathematics placement test included 75
operational and 10 pilot items covering mathematics basics, college algebra and trigonometry
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Results for Sample 3: (a) proportion of correct scores versus item number: empirical (solid line), theoretical with true
parameter values (broken line), theoretical with estimated parameter values (broken—dotted line); (b) estimated item diffi-
culty parameters under (1) (solid line) and the 3PL model (broken line); (¢) difference between item difficulty estimates;
(d) density function of n: theoretical (solid line) and fitted (broken line); and (e) density function of A: theoretical (solid
line) and fitted (broken line).

and is designed to be completed in 90 minutes. All items had five alternatives. Because the item-
total correlations for the last five pilot items (locations 45, 55, 65, 75 and 85) were poor, these
items were dropped, resulting in an analysis of 80 items.

In Table 2 we compare the test speededness model and the 3PL model, both with a common
guessing parameter ¢; =c, i = 1,..., I, in terms of —2log L, AIC and BIC. As is clear, all
criteria indicate the test speededness model as the most appropriate one to describe these data.
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Results for Sample 4: (a) proportion of correct scores versus item number: empirical (solid line), theoretical with true
parameter values (broken line), theoretical with estimated parameter values (broken—dotted line); (b) estimated item diffi-
culty parameters under (1) (solid line) and the 3PL model (broken line); (c) difference between item difficulty estimates;
(d) fitted density function of n; and (e) fitted density function of A.

TABLE 1.

Goodness-of-fit of the test speededness model versus the 3PL model with a common guessing parameter.

Sample 1 Sample 2 Sample 3 Sample 4
Speeded 3PL Speeded 3PL Speeded 3PL Speeded 3PL
—2logL 75995 76924 74714 75317 73664 74054 74496 74508
AIC 76331 77246 75059 75639 73999 74376 74832 74830
BIC 77156 78036 75875 76429 74824 75166 75657 75620
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TABLE 2.
Mathematics placement test data: Goodness-of-fit of the test speededness model versus the 3PL model with a common
guessing parameter.

Speeded 3PL
—2log L 252828 254996
AIC 253164 255318
BIC 254196 256308
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FIGURE 7.

Item pair log-odds ratio plots for: (a) the mathematics placement test data; (b) data simulated from the fitted 3PL model
with common guessing parameter; (c) and (d) data simulated from the fitted test speededness model.

Further evidence in favour of the test speededness model can be obtained by comparing plots of
empirical item pair log-odds ratios observed in the mathematics test data set and the respective
plots obtained on data simulated from the models under investigation. In Figure 7 we show the
item pair log-odds ratios of the mathematics placement test data (Figure 7(a)), together with
the ones obtained on a data set simulated from the fitted 3PL. model (Figure 7(b)) and for two
data sets simulated from the test speededness model (Figure 7(c) and (d)). A darker value in
the gray-scale matrix refers to a higher value for the empirical log-odds ratio, while a lighter
value is chosen for a lower one. If a model explains the dependency structure of the data well,
the observed gray-scale matrix should not differ systematically from simulated ones under the
model. As is clear from Figure 7, the 3PL model does not account for all dependencies present
in the data. On the other hand, the model for test speededness presented in this paper produces
gray scale matrices that are almost indistinguishable from the one observed on the mathematics
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FIGURE 8.
Mathematics placement test data: (a) proportion of correct scores versus item number: empirical (solid line), theoretical
with estimated parameter values (broken line); (b) estimated item difficulty parameters under (1) (solid line) and the 3PL
model with common guessing parameter (broken line); (¢) difference between item difficulty estimates; (d) fitted density
function of n; (e) fitted density function of A; and (f) proportion of the examinees experiencing test speededness effects
as a function of time.

placement test data. Further note that the dependencies tend to become stronger as a function of
the item positions. The darkening of the plots starts already quite early, say from items 20-30 on,
an observation that is consistent with the estimates obtained for the parameters of the 7, density
function. It is worthwhile mentioning that the log-odds plots discussed above indicated the need
for the inclusion of discrimination parameters. In particular, model (1), when fitted without item
discrimination parameters, yielded log-odds plots which, on average, reproduce the dependency



78 PSYCHOMETRIKA

1.0

04
Proportion of examinees

Proportion of examinees

0.2
L

T T T T T T T T T T T T T T
20 30 40 50 60 70 80 20 30 40 50 60 70 80

Total score Total score

(c) (d)

Proportion of examinees
Proportion of examinees

Total score Total score

FIGURE 9.
Mathematics placement test data: empirical ICCs of the real data (solid line) plotted against bootstrap results (circles)
and pointwise 95% confidence intervals (broken lines): (a) item 16; (b) item 34; (¢) item 60; and (d) item 79.

structure quite well, but failed to reproduce the ‘striped’ patterns as observed in the mathematics
test data.

We now further evaluate the fit of the proposed test speededness model. In Figure 8(a) we
plot the empirical (solid line) and estimated theoretical (broken line) proportions correct scores
versus the item number. The proportions correct scores clearly tend to decrease when considered
as a function of item number. This does not necessarily indicate test speededness as the items may
simply be ordered according to item difficulty, with the more difficult items near the end of the
test. Note, however, that the test speededness model produces an almost perfect fit to the data: in
Figure 8(a) the estimated theoretical and empirical proportions correct scores are almost indistin-
guishable. This goodness-of-fit evaluation clearly only involves marginal probabilities and hence
only gives a partial picture of the absolute model fit. To evaluate the absolute goodness-of-fit we
have used a parametric bootstrap approach. In this we compare the empirical ICCs with those
obtained from repeated sampling from the proposed test speededness model with parameters
replaced by their maximum likelihood estimates. If the model really fits the data, the observed
ICCs should be in line with the simulated ones. The bootstrap procedure was implemented with
a uniform (—4, 4) distribution for the person ability parameters. This choice was made in order
to obtain reliable estimates of the ICCs in the lower and upper ranges of ability. In Figure 9
we show for some items the empirical ICCs (solid lines) together with those obtained from 100
bootstrap iterations (dots), as well as pointwise 95% confidence intervals (broken lines). As is
clear from this plot, except for a small number of scores, all empirical ICCs are contained in
the confidence band based on the bootstrap samples, giving further evidence in favour of the
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TABLE 3.
Empirical Bayes estimates for the random effects of the nine examinees with the largest speededness point.

Examinee él, )A\p fp
2493 1.0571 22.4043 0.8500
2780 1.8343 22.1902 0.8250
1606 1.4791 17.6195 0.8000
91 0.8175 8.6124 0.7625
2109 0.8360 4.8137 0.6750
1632 1.2097 1.8898 0.6673
354 0.8394 1.4091 0.6625
850 1.3136 1.6181 0.6518
2075 0.6190 3.7148 0.6500

TABLE 4.

Empirical Bayes estimates of the random effects for the most able examinee (3418), an average examinee not affected
by test speededness (53), an average examinee affected by test speededness (432) and the least able examinee (1920).

Examinee ép ip Np
3418 2.5011 3.417 x 107° 0.3462
53 0.2107 1.091 x 107 0.0065
432 —0.2874 14.2562 0.6250
1920 —3.8906 1.362 x 1076 5.757 x 1079

model fit. The bootstrap goodness-of-fit results for the other items are similar to those given in
Figure 9. To summarize the goodness-of-fit evaluation we can say that the speededness model
fits the mathematics test data well: the model: (a) describes the dependency structure of the data;
(b) fits the univariate marginal distributions; and (c) fits the conditional structure of the data.

Further estimation results are graphically represented in Figure 8. In Figure 8(b) and (c)
we compare the estimates for the item difficulty parameters obtained under the test speededness
model (1) with those obtained under the 3PL. model with a common random guessing parame-
ter. The B; under (1) are in the range [—4.329; 4.855]. The estimated difficulties of end-of-test
items are clearly larger under the 3PL model with common guessing parameter than under the
test speededness model. Moreover, the difference between the two item difficulty estimates tends
to increase in item number, see Figure 8(c). In Figure 8(d) and (e) we plot the fitted random
effect density functions. For the speededness point parameter 7,, we obtained & = 1.080 and
B =2.441, yielding a Beta distribution with mean 0.307 and standard deviation 0.217. From a
practical point of view this result can be interpreted as follows: assuming the postulated Beta
distribution holds for the population of speededness points, one can estimate the proportion of
the examinees that are speeded at some time point t* in the test by the estimated distribution
function of 7, i.e. by Gz(t*). We refer to Figure 8(f) for an illustration of this. Concerning the
speededness rate A, the estimates are (i, = —3.604 and 6; = 2.771, resulting in a log-normal
distribution with mean 1.264 and standard deviation 58. Finally, the estimates for the correlation
parameters obtained on the mathematics placement test agree with expectations: 6 and 1 show
a positive correlation (0g, = 0.659), 6 and A a negative (g = —0.178), and 7 and A a posi-
tive (Op1 = 0.319). Moreover, all correlation parameters were found to be highly significantly
different from zero on the basis of likelihood ratio tests.

Finally, we calculated the empirical Bayes estimates for the random effects 6, n, and A,
p=1,..., P. These estimates allow us to identify outlying examinees, or examinees affected by
speededness effects. In Table 3 we report the empirical Bayes estimates for the random effects
of the nine examinees with the largest estimated test speededness point, 7),,. Figure 10 shows
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Response profile of: (a) the examinee with the largest ability estimate (examinee 3418); (b) an examinee with an average
ability estimate which is not affected by test speededness effects (examinee 53); (¢) an examinee with an average ability
estimate which is affected by test speededness effects (examinee 432); and (d) the examinee with the smallest ability
estimate (examinee 1920).

the respective response profiles, with the vertical reference line representing the estimated test
speededness point, i.e. 801],. Note, in particular, the role played by the test speededness point
np and the speededness rate A ,. Further, these profiles with a quite abrupt shift from correct to
incorrect answers are all associated with examinees having a rather high ability, an observation
that is consistent with Yamamoto and Everson (1997). In Table 4 we report the point estimates
for the random effects of a very high, two average and a very low ability student; the corre-
sponding response profiles are shown in Figure 11. Examinees with a very low ability, i.e. with
almost all items incorrectly answered, do not of course exhibit test speededness effects (both
fp and A p very small). The same applies to students with a very high ability (almost all items
correctly answered). Examinees with intermediate ability estimates may either show a speeded
or a nonspeeded response profile.

5. Discussion and Conclusion

In this paper we proposed an IRT model dealing with test speededness. The model can be
seen as consisting of two random processes, a classical IRT process and a random guessing
process, with the random guessing process gradually taking over from the IRT process. Both
change point and change rate are considered as random effects in order to model examinee dif-
ferences in both respects. Moreover, the speededness random effects are allowed to be dependent
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and besides may also depend on the ability of the examinee. The model improves on the hybrid
model of Yamamoto and Everson (1997) in the sense that examinees do not switch immediately
to random guessing once they become speeded. The model also extends the mixture IRT model
approach (Bolt et al., 2002, 2003), by allowing examinees to become speeded at different points
in the test. From the simulation study we may conclude that recovery of the parameter values of
the test speededness model is rather good and that the model can be differentiated from the 3PL
model by using information criteria such as AIC and BIC. Inference concerning the fixed effects
of the proposed model can be drawn on the basis of likelihood ratio tests.

As mentioned in the simulation section, it can take a quite long time to estimate the model.
These long computation times can to a large extent be traced back to the approximation of the
three-dimensional integral when computing the marginal probability of a response profile, a com-
putation that needs to be done for each of the examinees. These computations are essentially of
the same nature for all examinees, and hence considerable gains can be achieved by running
these computations in parallel. Another approach is to start with fitting a simple, unidimensional
IRT model rather than the postulated model for test speededness, followed by an investigation
of the need for more a complex model. This investigation can be done in a formal way on the
basis of tests for unidimensionality, as proposed by, among others, Stout (1987, 1990), or using
an informal graphical approach comparing, for instance, item pair log-odds plots for the data
with similar plots for data sets generated from the fitted model. The latter approach is illustrated
in Figure 7.

The model we presented is an instantiation of a more general category of models with grad-
ual change in a series of repeated observations. For example, in a learning experiment one may
start with guessing because one has no insight into how to solve the items, whereas later in the
series a gradual shift may occur to a more appropriate strategy to actually solve the items, thanks
to learning. This change process could be modelled in a way that is complementary to the speed-
edness model, with a transition from guessing to solving instead of a transition from solving to
guessing as for the case of speededness. From a general perspective, one may consider any tran-
sition between two strategies or two principles during a series of repeated observations, given
that the two strategies or principles correspond to models that can also be estimated separately.
This opens up a rather broad category of applications in psychology and in other disciplines.

The model considered assumes a dichotomous response (incorrect/correct) with test speed-
edness gradually degrading responses towards incorrect answers. However, besides more fre-
quent wrong answers, test speededness may also result in omitted answers. This omission may,
next to test speededness, also depend on ability and hence the nonresponse is, using the ter-
minology of Little and Rubin (1987), missing not at random (MNAR). An early attempt to
model nonresponse in test data can be found in Lord (1983), where a trinomial response model
(omit/incorrect/correct) is proposed with dropout being examinee specific. Extensions of this
model including test speededness are worthwhile considering. We refer to Béguin (2003), Pi-
mentel (2005) and Goegebeur, De Boeck, Molenberghs and del Pino (2006) for recent contribu-
tions. Next to these models, the selection and pattern-mixture models (see, e.g. Glynn, Laird &
Rubin, 1986), two popular dropout models in the biomedical sciences, may also deserve attention
in this respect. This is a topic of ongoing research.

Appendix 1. Example SAS Code

data geg;

infile ‘c:\irml\simul3nn.txt’;
input y nr person x1-x80;

nr_ n = nr/80;

run;
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proc nlmixed data=geg method=gauss noad technique=newrap

maxiter=500 maxfu=5000 gpoints=5;

parms bl-b80=-1 al-a80=1 c=.2 mlambda=0 slambda2=1 a=2 b=2 rl12=0 rl3=0
r23=0;

alpha =

al*xl+a2*x2+a3*x3+ad*x4+a5*x5+a6*x6+a7*x7+a8*x8+a9*x9+al0*x10+
all*xll+al2*x12+al3*x13+ald*x14+al5*x15+al6*x16+al7*x17+al8*x18+al9*x19
+a20*x20+
a2l*x21+a22*x22+a23*x23+a24*x24+a25*x25+a26*x26+a27*x27+a28*x28+a29*x29
+a30*x30+
al3l*x31+a32*x32+a33*x33+a34*x34+a35*x35+a36*x36+a37*x37+a38*x38+a39*x39
+a40*x40+
adl*x41+ad2*x42+ad3*x43+add*x44+a45*x45+a46*x46+ad7*x47+a48*x48+a49*x49
+a50*x50+
abl*x51+a52*x52+a53*x53+a54*x54+a55*x55+a56*x56+a57*x57+a58*x58+a59*x%x59
+a60*x60+
ab6l*x61+a62*x62+a63*x63+a64*x64+a65*x65+a66*x66+a67*x67+a68*x68+a69*x69
+a70*x70+
a7l1*x71+a72*x72+a73*x73+a74*x74+a75*x75+a76*x76+a77*x77+a78*x78+a79*x79
+a80*x80;

beta =

bl*x1+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7+b8*x8+b9*x9+b10*x10+
bll*x11+b12*x12+b13*x13+b14*x14+b15*x15+b16*x16+b17*x17+b18*x18+b19*x19
+b20*x20+
b21*x21+b22*x22+023*x23+b24*%x24+b25*x25+026*x26+b27*x27+b28*x28+b29*x29
+b30*x30+
b31*%31+b32*x32+b33*x33+b34*%x34+b35*x35+b36*x36+b37*x37+b38*x38+b39*%x39
+b40*x40+
bd1*x41+b42*x42+043*x43+b44*x44+bA5*x45+046*x46+b47*x47+b48*x48+0b49*x49
+b50*x50+
b51*%x51+b52*x52+b53*x53+b54*%x54+b55*x55+b56*x56+b57*x57+b58*x58+b59*%x59
+b60*x60+
b61*%x61+b62*x62+b63*x63+b64*%x64+b65*x65+066*x66+b67*%x67+b68*x68+0b69*%x69
+b70*x70+
b71*x71+b72*x72+b73*x73+074*x74+b75*x75+b76*x76+b77*x77+b78*x78+b79*x79
+b80*x80;

lambda=exp (mlambda+slambda2**.5*nlambda) ;

eta=betainv (probnorm(neta),a,b) ;

r=exp (alpha*theta-beta) / (1+exp (alpha*theta-beta)) ;
s=(l-(nr_n-eta)) **lambda;

if (s >= 1) then pr=c+(l-c)*r; else pr=c+(l-c)*r*s;

model y ~ binary(pr);

random theta nlambda neta ~ normal([0,0,0],[1,r12,1,r13,r23,11)
subject=person;

run;

Appendix 2

We start by introducing the concept copula function as well as a fundamental theorem by
Sklar (1959), stating that every joint distribution function can be decomposed into its marginal
distribution functions and a copula function, i.e. a function describing the dependency structure.
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Definition 1. An n-copula is a function C : [0, 1]" — [0, 1] with the following properties:

1. for every u € [0, 1]* with at least one coordinate equal to 0, C(u) =0

2. if all coordinates of u are 1 except uy, then C(u) = uy

3. for all a,b € [0, 117" with a < b the volume of the hyperrectangle with corners a and b is
positive, i.e.

2 2 . .
Yo Y =D C o ug,) 2 0,

il=1 =l

where u;, =a; and u;, = b;.

So essentially an n-copula is an n-dimensional distribution function on [0, 1]"” with standard
uniform marginal distributions. The next theorem, due to Sklar, is central to the theory of copulas
and forms the basis of the applications of that theory to statistics.

Theorem 1 (Sklar, 1959). Let X' = (X1, ..., X,) be a random vector with joint distribution
function Fx and marginal distribution functions F;, i =1, ..., n. Then there exists a copula C
such that, for all x € R",

Fx(x)=C(Fi(x1), ..., Fa(xy)). 4
If F1,..., F, are all continuous, then C is unique, otherwise C is uniquely determined on
Ran F| x --- x Ran F,,. Conversely, given a copula C and marginal distribution functions
Fi,..., Fy, the function Fx as defined by (4) is a joint distribution function with margins

Fi,..., F,.

As is clear, Sklar’s theorem separates a joint distribution into a part that describes the de-
pendence structure (the copula) and parts that describe the marginal behaviour (the marginal
distributions). The second statement in the above theorem is very useful for modelling purposes
as it gives a very convenient and flexible way to construct a joint distribution function. Indeed,
all one has to do is to select models for the univariate marginal distributions and for the depen-
dence structure. In our context, the latter property can be used to build a model for G in (2).
Popular copula functions in this respect are, among others, the normal, Sarmanov (Lee, 1996),
Clayton (Clayton, 1978), Frank (Frank, 1979) and Gumbel-Hougaard (Gumbel, 1960) copulas.
For further details on copula functions we refer to Joe (1997) and Nelsen (1999).

The following proposition states that for a joint distribution with a normal copula function
but arbitrary (continuous) marginal distributions, appropriately chosen compositions of probabil-
ity and inverse probability integral transforms yield a multivariate normal distribution. The im-
portance of the result stems from that fact that it provides the basis for using the SAS NLMIXED
procedure, which allows only multivariate normal random effect distributions, in cases charac-
terized by a normal copula function with otherwise arbitrary (continuous) distribution functions.
The result is a special case of the general property that increasing transformations of the marginal
distributions only affect the marginal distributions and not the dependence function.

Proposition 1. Consider an n-dimensional random vector X with joint distribution function G
and continuous marginal distribution functions G1, ..., G,. Assume that G is characterized by
a normal dependence function (copula) C, i.e.

G(xl,...,xn)=C(G1(x1),...,G,,(xn))
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with

&' uy) @ (un) 1 (1/27R-!
— .. - A z zZ
C(ula-“vun)—vf_oo \/_Oo (27{)”/2|R|1/26 dZ, (5)

in which R denotes a (positive definite) correlation matrix and @~ is the inverse standard
normal distribution function. Then the random variables

Yi=0 (Gi(X), i=1,...,n,
are jointly distributed as multivariate normal.
Proof: Denote the joint distribution function of Yy, ..., Y, by H. Then

Hyi,..ooy) =PX1=<y1,-., Yu < yn)
=P(@ 1 (G1(XD) < y1..... 27 (Gu(Xn)) < y)
=P(Gi(X1) <P(1),.... Gu(Xp) <P (yn))
=C(@(y1>,...,a>(yn))

7(1/2)z’R’1z
/ / o <2n>”/2|R|‘/2 a.

which is the distribution function of a multivariate normal distribution. O

Appendix 3. Empirical Bayes Estimation of the Random Effects

Although the model estimation implies an estimate of the parameters of the marginal distrib-
ution of Y, it is common practice in psychometrics to also calculate the estimations of the person
parameters. These are in our case the ability parameters 6, and the test speededness parameters
Apandn,, p=1,..., P. These random effects estimates give an idea about the between-subject
variability, and hence provide information that is helpful for detecting special profiles, say out-
lying individuals, or groups of individuals evolving differently in time, in our context individ-
uals affected by test speededness effects. To obtain estimates for the random effects, we need
their conditional posterior distribution. For notational convenience we split & into subvectors
£ and &, with &, = (B1,.... Br a1, ..., ar,c1,...,cp) and &5 = (w07, &, B, Pons P63, Po)-
Using Bayes’ rule we have

p(epa npv )"p|yp7 E) = Spp(yp|0p3 np’ )‘-pv El)p(0p9 np’ )“p|§2)7 (6)
where §), is the normalizing constant, i.e. 5, = 1/p(y,|§), and with

PplOp.np. hp. &) = Hny”’(l — )
i=1

and

_ 1 g2(np) —y'R ly2
PO 2 2) = P R P 0y 6@ (G ) ' @
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In (7), ¢ denotes the standard normal density function, and

_ InAp, — u;
y/=<9,,,q> l(cz(n,»),—’;A )

Expression (7) is obtained by differentiating G(0p,1p,Ap) = C(G1(6p), G2(np), G3(Ap)),
where C is given by (5), with respect to 6,, , and A, combined with the facts that G1(6,) =
@ (6p) and G3(Ap) = @((InAp — wy)/03). The mode of (6) is used as a point estimate for 6, 1,
and A ,. More specifically, the empirical Bayes estimate (ép, p Py p) is the value for (8, 7, Ap)
that maximizes p(0,, np, Aplyp, §), in which the unknown parameters in § have been replaced
by their estimates obtained from the marginal maximum likelihood estimation.
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