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A SPEEDED ITEM RESPONSE MODEL: LEAVE THE HARDER TILL LATER
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A speeded item response model is proposed. We consider the situation where examinees may re-
tain the harder items to a later test period in a time limit test. With such a strategy, examinees may not
finish answering some of the harder items within the allocated time. In the proposed model, we try to
describe such a mechanism by incorporating a speeded-effect term into the two-parameter logistic item
response model. A Bayesian estimation procedure of the current model using Markov chain Monte Carlo
is presented, and its performance over the two-parameter logistic item response model in a speeded test
is demonstrated through simulations. The methodology is applied to physics examination data of the De-
partment Required Test for college entrance in Taiwan for illustration.
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1. Introduction

Most achievement tests are administered within an allocated time. Given the time limit, test
takers might not have enough time to finish answering all the test items. As a result, examinees
might be forced to guess or skip some items, or their test performance might be affected by
the feeling of time pressure. Test speededness is said to occur under the above situations in
achievement tests (van der Linden, 2011). For simplicity, such time constraint is usually ignored
in the traditional item response theory (IRT) models in which it is assumed that examinees have
enough time to answer all the items. If the test performance of some examinees are affected
by the time limit and the data are analyzed using traditional IRT models, the location, scale,
and ability parameter estimates will be biased (Evans & Reilly, 1972; Oshima, 1994). Such bias
might further impair the efficiency or optimality of some procedures utilized in adaptive testing,
multistage testing, or test equating (for example, Bridgeman & Cline, 2004; Kingston & Dorans,
1984; van der Linden, Breithaupt, Chuah, & Zhang, 2007; Wollack, Cohen, & Wells, 2003).
In addition, the local independence assumption of IRT models will often be violated if ability
is the only latent trait considered to affect the test performance in a speeded test (Yamamoto
& Everson, 1997; Yen, 1993). More complex IRT models which take into consideration the
response process or possible mechanism adopted by examinees who do not have enough time to
answer all the items would be necessary to overcome such discrepancies between the traditional
IRT models and examinees’ test behavior. In fact, a few parametric models have been proposed
to characterize the effect of speededness in time limit tests.
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Bolt, Cohen, and Wollack (2002) utilize the mixture Rasch model (MRM, Rost, 1990) to
reduce the bias of difficulty parameter estimates from the Rasch model for the speededness con-
dition. They assume that some examinees are able to answer all the questions whereas the other
group of examinees who belong to the so-called speeded class may not give their best perfor-
mances toward the end of the test due to the time limit. Accordingly, the difficulty parameter
estimates are allowed to differ for those end-of-test items between these two classes. Moreover,
ordinal constraints are imposed on the difficulty parameters of the two classes to characterize
the speededness effect. The MRM with ordinal constraints approach shows that using difficulty
parameter estimates from the nonspeeded class, rather than from all examinees, could eliminate
the bias coming from test speededness.

Based on the idea of mixture models, Cao and Stokes (2008) propose the IRT continuous
guessing model (IRT-CG), a mixture of two-parameter logistic (2PL) IRT models, to characterize
the differences between the motivated and the unmotivated classes in low-stakes tests, where test
consequences are not crucial to test-takers. It is assumed that motivated examinees make their
best effort to answer all the questions while the unmotivated ones answer items according to the
item ordering and make less effort compared to their motivated counterparts. To accommodate
this mechanism, the location parameters in the 2PL model are allowed to differ between the two
classes. Although IRT-CG was originally designed for low-stakes tests to account for different
test behavior, it can also be adopted to model the speededness effect assuming that the worse
performance of examinees in the unmotivated class, which should be called the speeded class
here, is caused by time pressure rather than low motivation.

The assumption, in both the MRM with ordinal constraints approach and IRT-CG, that ex-
aminees answer items according to item ordering, and consequently that speededness only affects
the end-of-test items can be traced back to the HYBRID model (Yamamoto, 1995). The HYBRID
model hypothesizes that some examinees answer questions according to item ordering up to an
examinee-specific threshold and guess the remainders due to the time limit, while others answer
all the items. Responses to the answered items for examinees of either case are characterized
by 2PL models. In contrast to those mixture IRT model approaches where the speededness ef-
fect is assumed to be the same for all examinees within the speeded class, the examinee-specific
threshold in the HYBRID model allows the number of items affected by test speededness to dif-
fer from person to person. Models capable of dealing with individual differences in the degree
of speededness are considered to provide more information on understanding examinees’ test
behavior.

Following the idea of examinee-specific thresholds and assuming items are answered by
their orderings, Goegebeur, De Boeck, Wollack, and Cohen (2008) propose a speeded IRT model
with gradual process change. For brevity and simplicity, their model is referred to as IRT-GPC
here. It is presumed that examinees answer items from the beginning. Once they feel that there
is not enough time left to answer the rest of the items, they choose to answer only some of the
remaining ones. The probability of an item ending up being picked and answered is modeled in
IRT-GPC, and the gradual process change refers to the feature that the later the item ordering is,
the smaller the probability of being answered will be. In other words, every item with its ordering
beyond the examinee’s threshold has some probability of not being in the solving process due
to the time limit. The idea of modeling the probability of getting into the solving process for
an item to capture the effect of speededness is very different from the previous studies in which
speededness effect is directly built into the probability of correctly answering the item.

Instead of comparing the threshold to item ordering such as that in HYBRID and IRT-GPC,
the IRT difficulty-based guessing model (IRT-DG; Cao & Stokes, 2008) compares the examinee-
specific threshold to location parameters to determine the set of items that might be affected by
low motivation in low-stakes tests. In fact, this model can be further adopted to model speeded-
ness effect in high-stakes tests via the mechanism that examinees in one class answer the easier
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items but guess those harder ones due to insufficient test time; whereas examinees in the other
class answer faster, and thus are not affected by the time limit. In IRT-DG, it is assumed that the
difference between the threshold and ability parameter for each examinee is the same, and this
difference is described by a parameter. This specification is very simple but may be restrictive
for some real cases.

A concept similar to the threshold in IRT-DG has been suggested even earlier in Bejar
(1985). Bejar considers the mechanism that once a test taker does not exactly know the an-
swer to an item, he or she first leaves the item until later. At the second round, he or she answers
items with more certainty from those left ones. The process is repeated until all the items are an-
swered or test time is run out. Bejar (1985) uses this mechanism to explain certain discrepancies
between the data and the traditional IRT model fittings, but does not formulate this mechanism
by a parametric model. In contrast to comparing the examinee-specific threshold to the location
parameters in IRT-DG, Bejar (1985) compares it to the degree of certainty to each item. These
two approaches coincide if the degree of certainty can be exactly characterized by the difference
between the ability parameter and the location parameter.

In the present study, a new speeded IRT model is proposed based on the mechanism that
examinees answer the easier items first and retain the harder ones to a later test period in order
to achieve higher scores. The idea of leaving some items till later is similar to Bejar’s story. We
compare our examinee-specific thresholds to the location parameters, and these thresholds are
all free to be estimated in a more flexible fashion than that in IRT-DG. In addition, the concepts
of gradual process and modeling the probability of getting into the solving process for an item
in Goegebeur et al. (2008) are adopted in the proposed model. Details for the proposed model
are presented in the next section. The differences between our model and previous studies are
also discussed. A Bayesian analysis for model estimation through Markov chain Monte Carlo
(MCMC) is described in Section 3. Some simulations are conducted to demonstrate the validation
of the Bayesian estimation procedure in Section 4. An application to the entrance examination
data is illustrated in Section 5, followed by some concluding remarks in Section 6.

2. Leave-the-Harder-till-Later Speeded Item Response Model

In this section, we introduce the leave-the-harder-till-later speeded Rasch model (abbrevi-
ated as LHL-Rasch) and its 2PL extension (denoted as LHL-2PL). The LHL-Rasch model, as
an extension of the Rasch model, is designed for the situation in which some of examinees may
not have enough time to answer all the items within a given time. We hypothesize that, while
facing tests within an allocated time, an examinee tends to answer easier items first and leave
items with a certain level of difficulty till later. After answering easier items, the examinee would
attempt some of the first-skipped items, and eventually some of the first-skipped and attempted
ones may be correctly answered. Probabilities of the first-skipped items being attended to later
are modeled, and the harder the item is, the smaller the probability will be. If an examinee does
not have enough time to attend to all the first-skipped items due to the time limit, some items
will be left blank at the end of the test. Whenever an item, regardless of first-skipped or not, is
put into the solving process, its response is characterized by the Rasch model. Formulations of
the LHL-2PL and LHL-Rasch models are described in Section 2.1. In general, we refer to our
speeded model as LHL-IRT, indicating either case. An alternative representation of the proposed
model is given in Section 2.2 to provide more insight into the model. Moreover, the connections
between our proposed model and related models are also discussed.

2.1. Leave-the-Harder-till-Later Speeded 2PL Model

Let Ypj be the dichotomous response of examinee p on item j , where p = 1,2, . . . ,P ,
and j = 1,2, . . . , J . We denote bj and aj as the location and scale parameters, respectively,
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for item j , and θp as the ability parameter for examinee p in the 2PL model. In the following,
we introduce LHL-2PL directly and regard LHL-Rasch as its special case. Under LHL-2PL, the
probability of examinee p obtaining a correct response on item j is a product of two terms, the
probability of getting a correct response under the 2PL model and the probability of getting into
the solving process affected by the test speededness, that is,

P(Ypj = 1|aj , bj , θp, τp,λ) = πpj (1)

with

πpj = 1

1 + e−aj (θp−bj )
· e−λ(bj −τp)·I {bj >τp}, (2)

where τp is the examinee-specific threshold parameter for the speededness effect of examinee p;
λ, larger than zero, is the overall speededness rate; and I {·} is the indicator function. For conve-
nience, the term e−λ(bj −τp)·I {bj >τp} is referred to as the speeded term in this article. Though the
location parameter is no longer a direct indication of item difficulty in the 2PL model, the term
LHL is preserved for our 2PL version of the speeded model. For brevity, the term difficult/easy
is used instead of large/small location parameter as we describe the scenario in the 2PL settings.
LHL-Rasch is simply a special case with aj = 1, for j = 1,2, . . . , J , in LHL-2PL.

Parameter τp represents, for examinee p, the location threshold. Items with location param-
eters exceeding τp will be regarded as not-so-easy and requiring considerable amount of time
to be solved, or as so difficult and simply having no idea how to solve at the first glance. Test
strategy considered in the present model is that examinees do not put such items into the prob-
lem solving process until all the easier items are answered already. In other words, examinee p

would directly try to answer all the items with location parameters smaller than τp and retain
those harder items to a later period of the test. We refer to the examinee-specific parameter τp as
the speededness point for examinee p.

It is further assumed that a particular first retained item j would be attended or answered,
for examinee p, with probability e−λ(bj −τp). That is, the harder the retained item is, the smaller
the probability will be of that item being in the solving process. The decay rate of e−λ(bj −τp) is
determined by the speededness rate λ. When bj exceeds τp , a larger λ brings a smaller probability
of examinee p answering item j than a smaller λ. To sum up, when the location parameter bj is
smaller than the examinee-specific threshold τp , the probability of examinee p answering item
j equals 1; otherwise, the probability equals e−λ(bj −τp). Hence, for examinee p, the probability
of putting item j into the solving process is written as e−λ(bj −τp)·I {bj >τp}, the speeded term.

Let b = (b1, . . . , bJ ), a = (a1, . . . , aJ ), θ = (θ1, . . . , θP ), τ = (τ1, . . . , τP ), yp = (yp1,

. . . , ypJ ) and y = (y1, . . . ,yP ). We assume that, given b,a, θp, τp , and λ, responses over all
items for examinee p are conditionally independent, i.e.,

f (yp|a,b, θp, τp,λ) =
J∏

j=1

f (ypj |aj , bj , θp, τp,λ) =
J∏

j=1

π
ypj

pj (1 − πpj )
1−ypj . (3)

Furthermore, responses from different examinees are assumed to be independent, conditional on
b,a, θ ,τ , and λ.

Both θp and τp are parameters about examinees, and they are further assumed to be bivari-
ately normally distributed:

(
θp

τp

)
∼ N

((
μθ

μτ

)
,

(
σ 2

θ ρσθστ

ρσθστ σ 2
τ

))
, (4)

where θp and τp are allowed to be correlated with correlation ρ. For model identification purpose,
the marginal distribution of θp is set to be N(0,1) under LHL-2PL and set to be N(0, σ 2

θ ) under
LHL-Rasch.
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FIGURE 1.
The πpj (solid line) and πpj with the speeded term excluded (broken line) against bj , for 9 hypothesized examinees.
The θp equals to 1.4 (the first row), 0 (the second row) and −1 (the third row). The τp equals to 1.4 (the first column),
0.7 (the second column) and 0 (the third column), and the value of τp is indicated by the vertical line.

Another identification issue is regarding the specification of λ. Whenever bj is smaller than
τp for all examinees p and all items j , it implies that no test speededness occurs, and the LHL-
IRT model reduces to the IRT model. On the other hand, LHL-IRT with λ = 0 also reduces to
the IRT model. Therefore, zero is excluded from the range of λ under LHL-IRT to prevent model
unidentifiability.

To visualize the effect of the speeded term, the πpj with or without the speeded term under
LHL-Rasch is plotted against bj in Figure 1, under different levels of θp and τp . A larger θp

or a smaller τp makes a more significant difference in πpj between LHL-Rasch and Rasch, and
consequently a greater bias in estimation may occur if we mis-specify LHL-Rasch as Rasch.

2.2. Some Notes on the LHL-IRT Model

LHL-IRT is compared to several existing models in this subsection. First of all, a two-stage
representation for LHL-IRT via Bernoulli random variables is formulated. Based on this rep-
resentation, LHL-IRT is further compared to IRT-GPC. Secondly, some connections between
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LHL-IRT, IRT-GPC and models capable of dealing with nonresponse data are illustrated. At last,
the differences between the present model, IRT-DG and the story of Bejar (1985) are explained.

Similar to the idea in Goegebeur et al. (2008), getting a correct response in the present
model can be decomposed into a two-stage procedure. At the first stage, a Bernoulli trial with
success probability e−λ(bj −τp)·I {bj >τp} determines, for examinee p, whether to solve or leave
blank item j due to test speededness. In the case of problem solving, the probability of a correct
response is modeled by a 2PL model. In contrast, leaving blank directly leads to a wrong answer.
Formally speaking, let Zpj = 1 denote the event that examinee p attempts to answer item j , and
let Zpj = 0 be the event of not attempting item j . The two stages are stated as

Zpj |bj , τp,λ ∼ Bernoulli
(
e−λ(bj −τp)·I {bj >τp}),

Ypj |aj , bj , θp,Zpj ∼ Bernoulli

(
1

1 + e−aj (θp−bj )
· Zpj

)
.

This two-stage formulation is equivalent to (1) and (2) for the dichotomous response Ypj , due to

E(Ypj |aj , bj , θp, τp,λ) = E
(
E(Ypj |aj , bj , θp, τp,λ,Zpj )

)

= E

(
1

1 + e−aj (θp−bj )
· Zpj

∣∣∣aj , bj , θp, τp,λ

)

= 1

1 + e−aj (θp−bj )
· e−λ(bj −τp)·I {bj >τp}.

Though the two-stage point of view in LHL-IRT is similar to that in IRT-GPC (Goegebeur
et al., 2008), the mechanism described in the present model is quite different from that in IRT-
GPC. In IRT-GPC, it is assumed that items are answered in their orderings, and the affected
or skipped items are those with greater item ordering. However, in the present model, the sit-
uation that more difficult items would be skipped first while all the easier ones are answered
is accommodated. These different assumptions in the underlying mechanism result in different
speeded terms in the two models. Speededness point in IRT-GPC is compared to item ordering
whereas in LHL-IRT it is compared to ordered location parameters. The strategy of introducing a
two-stage process to a traditional IRT model is similar to that in nonignorable nonresponse mod-
eling, while the variable Zpj indicating whether an item undergoes the problem solving process
is unobserved in our work, in contrast to being observed in nonignorable nonresponse modeling
(Holman & Glas, 2005; O’Muircheartaigh & Moustaki, 1999). Glas and Pimentel (2008) further
utilize such a nonresponse model for a sequence of missing responses in the last few items due
to test speededness.

The idea of comparing examinee-specific threshold τp to the location parameters is similar to
IRT-DG. However, the threshold here is freely estimated, in contrast to being set to be a constant
plus θp in IRT-DG. Besides, the situations that the two models try to accommodate are quite
different. In IRT-DG, examinees belonging to the unmotivated or speeded class guess whenever
an item is harder than their thresholds. The present model characterizes that for an item with
its location parameter exceeding one’s speededness point, the probability of getting to solve that
item could range from 0 to 1. Once the item is in the problem solving process, the test taker
tries his or her best to answer the item. The two-stage Bernoulli trail point of view for the LHL-
IRT model makes this difference easier to be caught on. Moreover, the assumption that all the
first-skipped items are possible to be attempted by test takers in LHL-IRT also makes the LHL
scenario different from the idea of Bejar (1985).
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3. Estimation Procedure

In the proposed model, there is a more complex likelihood structure than that in the tradi-
tional IRT models due to the inclusion of the examinee-specific LHL speeded term. We perform
a Bayesian analysis for the proposed speeded model using the MCMC techniques. In particular,
a two-layer hierarchical prior is assumed for the model parameters to reduce the impact of the
prior settings on the posterior inference (Fox, 2010). The detailed prior settings and the estima-
tion procedures for the LHL-2PL model are given in this section, and they can be easily modified
for LHL-Rasch.

We start with the first-layer prior settings for the parameters, including {bj : j = 1,2, . . . , J },
{aj : j = 1,2, . . . , J }, λ, μτ , σ 2

τ and ρ. The location parameters bj ’s are assumed to follow
normal prior distributions (Swaminathan & Gifford, 1986). The scale parameters aj ’s and the
speededness rate parameter λ are all positive and assumed to follow exponential prior distribu-
tions. That is,

bj ∼ N
(
μb,σ

2
b

)
,

aj ∼ Exp(βa),

λ ∼ Exp(βλ),

where μb , σ 2
b , βa and βλ are hyperparameters.

For parameters μτ , σ 2
τ , and ρ, which characterize the joint distribution of examinee’s ability

and speededness points, we use standard prior settings for (μτ , σ
2
τ ):

μτ ∼ N
(
μ0, σ

2
0

)
, σ 2

τ ∼ Inv-Gamma(α0, β0),

where μ0, σ 2
0 , α0, and β0 are hyperparameters. The prior of the correlation ρ ∈ (−1,1) is spec-

ified through its Fisher’s z transformation to ensure good behavior at the boundary under the
random walk Metropolis–Hastings scheme (used later in the Bayesian analysis), i.e.,

ζ ≡ log

(
1 + ρ

1 − ρ

)
∼ N

(
μζ ,σ

2
ζ

)
,

and equivalently,

π(ρ) = 1√
2πσζ

exp

{
− 1

2σ 2
ζ

(
log

1 + ρ

1 − ρ
− μζ

)2} 2

(1 + ρ)(1 − ρ)
.

Given the first-layer prior, we specify the second-layer prior for all of the hyperparameters
in the following:

μb ∼ N
(
μ2, σ

2
2

)
,

σ 2
b ∼ Inv-Gamma(α1, β1),

βa ∼ Inv-Gamma(α2, β2),

βλ ∼ Inv-Gamma(α3, β3),

μ0 ∼ N
(
μ1, σ

2
1

)
,

σ 2
0 ∼ Inv-Gamma(α6, β6),

β0 ∼ Gamma(α4, β4),

μζ ∼ N
(
μ3, σ

2
3

)
,

σ 2
ζ ∼ Inv-Gamma(α5, β5).
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FIGURE 2.
True values for the location and scale parameters in the simulation study.

Basically, we use normal priors for location-type hyperparameters, inverse gamma priors for
scale-type hyperparameters, and gamma priors for rate-type hyperparameters. Since the prior
on β0 provides fair flexibility for the prior π(σ 2

τ ) already, the shape hyperparameter α0 is fixed
at 2.5 for convenience. All parameters in the second-layer priors, including μ = (μ1,μ2,μ3),
σ 2 = (σ 2

1 , σ 2
2 , σ 2

3 ), α = (α1, . . . , α6), and β = (β1, . . . , β6), are assigned in a reasonable way.
We further assume that all the priors are independent.

Let ξ1 = (a,b, λ,μτ , σ
2
τ , ρ) and ξ2 = (μb,σ

2
b , βa,βλ,μ0, σ

2
0 , β0,μζ , σ

2
ζ ). The joint poste-

rior of ξ1, θ , τ , and ξ2 given the data y satisfies

f (ξ1, θ ,τ , ξ2|y) ∝ f (y|ξ1, θ,τ , ξ2) f (θ ,τ |ξ1, ξ2)π(ξ1|ξ2)π(ξ2), (5)

where the sampling distribution f (y|ξ1, θ ,τ , ξ2) is specified in (1), (2), and (3), f (θ ,τ |ξ1, ξ2)

is defined in (4), π(ξ1|ξ2) is the first-layer prior, and π(ξ2) is the second-layer hyperprior. Since
the joint posterior is high-dimensional, and its form is nonstandard, we approximate the poste-
rior using the MCMC method via implementing the Metropolis–Hastings algorithm under which
the samples are sequentially drawn for (ξ1, θ ,τ , ξ2) from their full conditionals. The full con-
ditionals and the detailed sampling schemes are given in the Appendix. The performance of this
estimation procedure is demonstrated in Section 4 through a simulation study.

4. Simulation Study

To evaluate the performance of the Bayesian inference under the proposed LHL-IRT model,
two simulations were conducted based on data generated from the LHL scenarios, one for LHL-
Rasch and the other for LHL-2PL. Furthermore, in order to investigate the possible estimation
bias under model misspecification, for each simulated realization, both LHL-IRT and IRT models
were fitted.

We first describe the simulation settings for LHL-2PL. There are 40 items with their location
parameters bj ’s ranging from −3 to 2 and their scale parameters aj ’s ranging from 0.5 to 2.
More specifically, the true values for the location and scale parameters are plotted in Figure 2.
These values were chosen to represent the situation that there are several parts of questions in a
test, and the items within each part were ordered according to their location parameters. Under
this setting, some items with larger location parameters would appear before items with smaller
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TABLE 1.
RMSE of estimates from LHL-Rasch fitting and Rasch fitting under data generated from the LHL-Rasch model (10
replicates).

Parameter P = 250 P = 500 P = 1,000

LHL Rasch LHL Rasch LHL Rasch

b 0.2243 0.5453 0.1700 0.5539 0.1094 0.5860
θ 0.3742 0.4240 0.3682 0.4243 0.3646 0.4303
τ 0.8823 – 0.5877 – 0.4347 –

location parameters in the whole test. Therefore, in this case, one can distinguish between the
GPC and LHL mechanisms. As for the scale parameters in the 2PL and LHL-2PL models, for
items in the same part, the larger the location parameter is, the larger the scale parameter will be.
Regarding the examinee related parameters, the parameters associated with τp were specified as
μτ = 0.2 and σ 2

τ = 0.5, the threshold parameter τp was set to be positively correlated with the
ability parameter θp with correlation ρ = 0.8, and the speededness rate λ was set to 1. The values
of (λ,μτ , σ

2
τ ) were chosen such that the speeded effect was of moderate size. For example, the

expected number of items that one examinee solves, averaged over all examinees, was about 31
items out of the total of 40 items.

The simulation was performed under three different sample sizes of examinees, P = 250,
500, and 1,000. In each case, ten sets of independent replications were simulated according
to the above model settings, and the Bayesian analysis described in Section 3 was applied to
each replicate with the following second-layer prior settings: μ = (0,0,0), σ 2 = (1,10,1), α =
(3,3,3,2.5,3,3), and β = (3,8,8,2,10,8). In the LHL-Rasch case, all settings were identical
to those for LHL-2PL, except that {aj } were all fixed at 1, and σ 2

θ was set to be freely estimated.
For comparison, we also adopted the Bayesian estimation for the traditional IRT model using the
prior settings and posterior sampling scheme used for LHL-IRT. The identifiability constraints
adopted here under IRT models were the same as their counterparts in LHL-IRT models, i.e.,
(μθ , σ

2
θ ) = (0,1) in 2PL and μθ = 0 in Rasch.

The Bayesian analysis was implemented via MCMC schemes detailed in the Appendix, and
the convergence was checked by the method of R̂1/2 (Gelman & Rubin, 1992) based on five in-
dependent chains starting from different initial values. For most of the replications, convergence
was achieved after about 10,000 iterations. For each parameter, the posterior mean was calcu-
lated as our Bayes estimates, based on 30,000 MCMC draws after burn-in for each replicate. All
the computations were implemented using free statistical software R, and it took about 100 hours
for each replicate of the LHL-2PL case with 1,000 examinees, on a PC with Intel Core i7 and
2 GB of RAM.

We used the posterior means as the point estimates for parameters of interest, denoted as â,
b̂, θ̂ , τ̂ and λ̂. The estimation performance is evaluated by the root mean squared error (RMSE) of
the posterior means, summarized in Tables 1 and 2, for LHL-Rasch and LHL-2PL, respectively.
For brevity, we summarize the estimation performance for groups of parameters instead of for
each individual parameter, where the parameter groups are formed according to their common
characteristics in the model. More specifically, the performance in estimating aj ’s and bj ’s are
summarized by their respective RMSE values, averaging over all items and replicates. Similarly,
RMSE for θp’s or τp’s is obtained from averaging over all examinees and replicates. Further-
more, to visualize the bias for {bj } more closely, the estimated location parameter averaged over
replicates for each item is plotted against its true value in Figures 3 and 4. The estimates under
the LHL-IRT model fitting are represented by circles, and the estimates under the IRT model
fitting are represented by solid dots.

We first look at the results for the Rasch case. For data generated from LHL-Rasch, the
identifiability constraints imposed on the ability distribution of the two fitted models are identical
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TABLE 2.
RMSE of estimates from LHL-2PL fitting and 2PL fitting under data generated from the LHL-2PL model (10 replicates).

Parameter P = 250 P = 500 P = 1,000

LHL 2PL LHL 2PL LHL 2PL

b 0.2811 0.2770 0.1994 0.2380 0.1472 0.2063
a 0.3297 0.4151 0.2258 0.3865 0.1606 0.4238
θ 0.3691 0.3596 0.3664 0.3622 0.3653 0.3579
τ 0.5304 – 0.5472 – 0.4906 –

FIGURE 3.
Estimate of bj versus true value of bj , averaged over 10 replications, under Rasch fittings (solid dots) and LHL-Rasch
fittings (circles): (a) P = 250; (b) P = 500; (c) P = 1,000.

FIGURE 4.
Estimates of b̃j ’s versus true value of b̃j ’s, averaged over 10 replications, under 2PL fittings (solid dots) and LHL-2PL

fittings (circles), where b̃j = bj in (a)–(c) and b̃j = bj ·aj in (d)–(f): (a) (d) P = 250; (b) (e) P = 500; (c) (f) P = 1,000.
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to the true value used in data generation. As a result, the estimates of bj ’s from the two models
and their true values are thought to be of comparable scale. The bias, due to ignoring the LHL
speededness scenario, of {bj } associated with the Rasch model fitting is very pronounced, as
shown in Figure 3, as well as the large RMSE given in Table 1. Moreover, for those location
parameters with large true values, the larger the true value is, the larger the bias for the Rasch
fitting will be. This is to be expected because for an item with a larger location parameter, the
number of examinees with their thresholds smaller than the location parameter will be greater,
and, therefore, the impact of speededness is greater. In addition, the RMSE and bias of location
parameters reduce as the sample size increases for the LHL-Rasch fitting. It is also shown in
Table 1 that the performance for estimating θp’s is not much different between the two model
fittings, which is not surprising due to the constraint on {θp} for model identifiability.

Under the LHL-2PL setting, it is shown in Table 2 that for moderate and large data sets with
P = 500 and P = 1,000, the RMSE’s for both parameter groups {bj } and {aj } under the 2PL
fittings are larger than those under the LHL-2PL fittings, coming from bias due to ignoring the
LHL speededness phenomenon. Compared to the LHL fitting, the 2PL fitting gives a positive bias
for items with larger bj on the original scale of location parameters, as shown in Figure 4(a)–(c).
In this 2PL case, the estimates of aj and bj would influence each other, and, therefore, we may
also examine the estimation bias on the logit scale (i.e., b∗

j = ajbj ) to account for the effects of
estimates of bj and aj simultaneously. As shown in Figure 4(d)–(f), the bias for estimating b∗

j

due to ignoring the LHL speededness mechanism is even more pronounced under this logit scale
than that from the original scale of location parameters.

To sum up, the Bayesian procedure yields sensible estimates for the LHL-IRT models. More-
over, based on our limited experiences, the advantage of fitting the LHL-2PL model against the
conventional 2PL model is more pronounced for examinees of a large sample size (e.g., P = 500
or 1,000).

5. Application

We applied our methodology to the data of Department Required Test for college entrance in
Taiwan. The data are responses on the physics examination for 1,000 examinees randomly sam-
pled from a total of 35,357 examinees who took the test in 2010, provided by College Entrance
Examination Center (CEEC). Examinees have to answer 26 questions, including 20 multiple-
choice questions, 4 multiple-response questions and 2 calculation problems, within 80 minutes.
In addition, it is a formula-score test, namely, some points are deducted for each incorrect an-
swer. Based on such scoring scheme, examinees are less likely to guess whenever they do not
know the answer (Lord, 1975). This provides some rationale for considering a speeded model in
which random guessing is not allowed.

The data released by CEEC contain the original response and nonresponse information for
each examinee and each item, for both the multiple-choice and multiple-response questions. We
treat both nonresponses and incorrect answers the same way and code them as Ypj = 0. Each
calculation problem contains several sequential questions and is graded by professionals. An
examinee will obtain 10 points if both the final answer and the solution process are correct, or
otherwise only a partial credit will be granted. Only the total points (0–10) for each calculation
problem are available from the data. Thus, considering the scoring scheme for the calculation
problems, the response Ypj is coded as 1 whenever the original score is more than 7.5 out of 10
points, and zero otherwise.

In order to obtain some evidence for the LHL mechanism in analyzing the physics exam-
ination data, we consider the following procedures before fitting LHL models. Under the LHL
scenario, responses to the harder items are influenced by both test speededness and ability. It
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is as if there were a “speeded factor” that also affects the test performance. Hence, it would be
expected that additional local dependence exists among harder items beyond the traditional IRT
fitting. To examine such possible local dependence, the traditional IRT fitting is compared to
the multidimensional item response theory (MIRT) model fittings in terms of the likelihood and
Akaike information criterion (AIC). More specifically, the confirmatory MIRT (see, for example,
De Boeck & Wilson, 2004) is adopted, and only more difficult items are related to the second
factor. The “difficulty” is determined by the location parameter estimate b̂j under the 2PL fitting.
The MIRT provides a better goodness of fit compared to 2PL even after compensating the model
complexity when the overall local dependence among the responses of enough difficult items
can be captured by the second factor. For example, the log likelihood and AIC for the 2PL fitting
are −12,907.103 and 25,918.207, respectively, whereas they are −12,886.105 and 25,894.211
for the MIRT with the 8 most difficult items associated to the second factor. The comparison
results suggest the existence of local dependence among harder items beyond the 2PL fitting,
and provide some rationale to fit the LHL models.

Four models studied in the simulations are fitted to the data using Bayesian analysis. The
posterior means for parameters, obtained from an MCMC chain of about 40,000 iterations in total
and 30,000 iterations after burn-in, are used as the parameter estimates. We make further com-
parisons among these four models using the deviance information criterion (DIC; Spiegelhalter,
Best, Carlin, & van der Linde, 2002), a Bayesian model selection criterion briefly described in
the following. Let ξ3 = (a,b, θ ,τ , λ) and ξ̂3 be the posterior mean of ξ3 given data y. The DIC
for a fitted model is defined as

DIC = D(ξ̂3) + 2pD, (6)

where

D(ξ̂3) = −2 logf (y|ξ̂3),

pD = Eξ3|y
[−2 logf (y|ξ3)

] − D(ξ̂3),

in which the expectation in pD is taken with respect to the posterior distribution of ξ3. In (6), the
first term D(ξ̂3) measures the goodness-of-fit, and the second term pD represents the effective
number of parameters used in the model. A smaller DIC is preferred, which selects a model with
a better goodness-of-fit and simultaneously maintains the model complexity to be as simple as
possible. The resulting DIC values for the four fitted models are listed in Table 3. The LHL-
2PL is the model with the smallest DIC, indicating the best fitting performance among all the
models after compensating for model complexity. The LHL-2PL and LHL-Rasch models provide
better fit than their respective non-speeded counterparts and, therefore, the leave-the-harder-till-
later mechanism is thought to describe the data better. On the other hand, the amount of DIC
reduction from LHL-2PL to LHL-Rasch is greater than that from LHL-2PL to 2PL, indicating
that the scale parameters also provide a flexible feature to improve the fitting for this data set.

The estimates θ̂p and τ̂p for all examinees (P = 1,000) from the LHL-2PL fitting are plotted
in Figure 5(a). In addition, the estimate θ̂p versus the length of 95 % posterior interval for τp are
shown in Figure 5(b). For examinees with higher ability, θ̂p and τ̂p are positively correlated,
as shown in Figure 5(a), while the correlation is about zero for other examinees. This result
coincides with the intuition that, for the better performance group, if the ability of an examinee
is higher, the examinee-specific threshold, which is compared to location parameters for items
considered to be difficult and skipped first, will be greater. In contrast, for an examinee in the
worse performance group, the probability of correctly answering an item according to the 2PL
model is low and, therefore, in LHL-2PL the speeded term makes little influence on πpj , similar
to what we note in Section 2.1 and Figure 1. In other words, for examinees with lower ability, the
data provide less information for the thresholds, and, thus, the posterior intervals are expected to
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FIGURE 5.
Fitting LHL-2PL to the physics examination data: (a) τ̂p versus θ̂p ; (b) length of 95 % posterior interval of τp versus

θ̂p ; (c) τ̂p (solid dots) and 95 % posterior interval of τp (gray bars) versus θ̂p .

be wider, as shown in Figure 5(b). The estimates θ̂p , τ̂p (the solid dots) and the corresponding
95 % posterior interval for τp (gray vertical bars) are plotted in Figure 5(c), showing that even
though τ̂p’s in the low ability group fluctuate up and down, the fluctuations are relatively small
compared to the variation of their posterior distribution. Thus, this gives some explanation as to
why the correlation between their θ̂p’s and τ̂p’s is about zero.

The posterior distribution of λ is plotted in Figure 6(a). The posterior mean and 95 % pos-
terior interval for λ are 0.67 and [0.48,0.95], respectively. The speeded term exp{−λ(bj − τp) ·
I {bj > τp}} with respect to the value of bj − τp , based on the posterior mean, 2.5 % and 97.5 %
quantiles for λ, is demonstrated in Figure 6(b). All P ·J values of b̂j − τ̂p are collected, and their
distribution is summarized by a nonparametric curve, using the function density in software R, in
Figure 6(c). About 47 % of these values are greater than 0, indicating the proportion of (exami-
nee, item) pairs suffering from test speededness. The comparison of Figure 6(b) and Figure 6(c)
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FIGURE 6.
Fitting LHL-2PL to the physics examination data: (a) posterior distribution for λ; (b) the speeded term
exp{−λx · I {x > 0}} with posterior mean for λ (solid line) and 95 % posterior interval for λ (broken line); (c) the
distribution for the collection of b̂j − τ̂p for all p and j (the nonparametric curve), and no speededness effect for the left

part of the vertical line (b̂j − τ̂p = 0); (d) the comparison of b̂j ’s (small lines in the x-axis) with the distribution of τ̂p’s
(the nonparametric curve).

gives us some rough idea on the degree of test speededness for all the (examinee, item) pairs. We
may further investigate the degree of speededness based on the plot of the spread of the thresh-
old estimates (the nonparametric curve) and the location parameter estimates (the small line in
the x-axis) in Figure 6(d). Since the thresholds for most of the examinees are relatively small
compared to the largest location parameter, there is a certain degree of test speededness here.
For instance, for an examinee whose threshold is 0.6, which is about the mean of the thresholds,
7 items would have a less than 0.6 probability of being in the problem solving process. Due to
such a large speededness effect, it is expected that there is a great difference between the 2PL fit-
ting and the LHL-2PL fitting. Figure 7 shows the scatter plot of the location parameter estimates
under the 2PL fitting versus those under the LHL-2PL fitting. Fitting 2PL indeed yields larger
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FIGURE 7.
The physics examination data: estimate of bj from the 2PL fitting versus the LHL-2PL fitting.

TABLE 3.
The goodness of fit, model complexity and DIC of the LHL-2PL, LHL-Rasch, 2PL, and Rasch models, fitted to the
physics examination data.

Model D(ξ̂3) pD DIC

LHL-2PL 22,670.51 1,056.36 24,783.22
LHL-Rasch 23,658.33 845.03 25,348.40
2PL 23,137.45 882.69 24,902.83
Rasch 23,831.76 844.49 25,520.74

location parameter estimates than fitting LHL-2PL. In addition, the larger the location parameter
estimates is, the larger the difference will be. This coincides with the results of our simulations
and intuition.

The 2010 physics examination is considered as more difficult than past physics examinations
and requiring too much computation. Based on our analysis, the LHL-IRT models provide better
fit compared to their IRT counterparts via the criterion DIC. This indicates that there is indeed
a certain degree of “speededness effect” in this examination. However, our scoring scheme may
bring some additional variability other than speededness effect into the data. More specifically,
the “speededness effect” in our model might not only capture the effect of not having enough
time to solve the items, but also account for the possible effect of being unwilling to guess when
the examinee is uncertain about the answer under formula scoring. In this particular case, the
“speededness effect” would be interpreted as the test performance affected by both the time limit
and the unwillingness to guess under formula scoring. The above observation suggests a broader
interpretation of the speededness effect rather than pure test speededness under certain scenarios.
In conclusion, LHL-IRT is valuable in understanding test behavior and worth considering to
avoid biased estimates due to possible speededness effects.

6. Discussion

In this study, a speeded IRT model and its estimation procedure are proposed. The underlying
mechanism that in a high-stakes test with a time limit, an examinee may answer those easier
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items first and leave the harder ones till a later test period is modeled by incorporating a speeded-
effect term into the traditional IRT model. Our simulation results showed that parameters were
recovered well through the proposed Bayesian estimation procedure. Moreover, fitting the current
model reduced the RMSE and bias of bj ’s as compared to simply fitting a traditional IRT model
when the underlying mechanism is LHL in a speeded test.

Generally speaking, the proposed parametric model is not simply for the LHL scenario.
Actually, it accommodates mechanisms for which the probability of attempting one item for a
particular examinee p varies according to the magnitude of the location parameter, once the
location parameter is larger than an examinee-specific threshold. Furthermore, the larger the
magnitude is, the smaller the probability will be. As an example, in a low-stakes test, unmotivated
examinees may only answer easier items and randomly select some of harder ones to answer,
and consequently the fitted “speededness effect” could be explained as the degree of lacking
motivation. As another example, similar to the case in Section 5, if an examinee tries a difficult
item and is unwilling to guess under uncertainty due to formula scoring, the LHL-IRT model
may also be suitable for such a case in which the fitted “speededness” effect will be explained as
willingness to guess or answer under uncertainty. In conclusion, the LHL-IRT model can be more
widely used for situations other than simply the LHL scenario. One has to carefully interpret the
fitted speededness effect depending upon the situation.

Under the framework of using parametric models to illustrate certain mechanisms during the
process of a speeded test, there are mainly two classes of models. One assumes that items are
answered by item ordering, and hence only the later items will be affected by the time limit, tak-
ing IRT-GPC, HYBRID, IRT-CG, and the MRM with ordinal constraints approach, for example.
In the other class of models, it is hypothesized that examinees cannot fully reflect their ability
on items with larger location parameters due to the time limit. LHL-IRT and IRT-DG belong to
this class. However, in an achievement test with paper-pencil format, items are usually listed all
at once and are not necessarily ordered by their location parameters. Therefore, fitting the two
classes of model might reach different results. For a test without relatively difficult items appear-
ing before some easier items, the models with item-ordering assumption are suitable. In contrast,
for a test with several parts of questions which are ordered by the location parameters within
each part, it is quite possible that examinees try their best on all the easier items first and then
attempt those harder ones, in order to obtain higher score. Under this circumstance, it is advised
to fit the LHL-IRT or IRT-DG to accommodate the mechanism better.

There are several strong assumptions in LHL-IRT, such as the same speededness rate λ for
all the examinees and not allowing for guessing. In other words, the current study merely serves
as a first attempt to realize the LHL mechanism by formulating the parametric model in the
simplest way. Some extensions to relax these assumptions may be considered in future research.
In addition, we do not distinguish between incorrect responses and nonresponse (Holman &
Glas, 2005; Lord, 1983; O’Muircheartaigh & Moustaki, 1999) in LHL-IRT. However, in a test
on which examinees are less likely to guess, test speededness may result in higher nonresponse
rates for some items, and hence it brings more information to take nonresponse into account. Glas
and Pimentel (2008) apply a nonresponse model to the missing responses on the last few items
for test speededness modeling. It remains an issue to incorporate the information of nonresponse
into other mechanisms of test speededness.
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Appendix: Full Conditionals and Sampling Scheme in Metropolis–Hastings Algorithm

Let η = (ξ1, θ ,τ , ξ2) be a vector consisting of all parameters in the model, all the random
effects in (5), and the parameters in the first-stage prior. For any component x in η, denote η−x

as all components of η, except x. At the (t + 1)-th iteration in the MCMC constructed by the
Metropolis–Hastings algorithm, considering the conditional distribution of x, superscript (t) for
all parameters in η−x stands for their current values. Current values indicate values at (t + 1)-th
step for parameters whose (t +1)-th iteration have been sampled; values at t th step for parameters
whose (t + 1)-th iteration have not yet been sampled.

Let cθ , cτ , cb, ca , cλ, cσ 2
τ

, and cρ be scales (variances) for the jumping distributions of the
Metropolis–Hastings algorithm. These scales should be tuned in order to get suitable acceptance
rates.

At (t + 1)-th iteration of the MCMC procedures, the sampling scheme is as follows:

• For θp , τp , and bj : a random walk jumping proposal is adopted for the Metropolis–
Hastings algorithm. Their full conditionals are

f (θp|y,η−θp
) ∝ e

−θ2
p

2(1−ρ2) · e
ρθp(τp−μτ )

(1−ρ2)στ ·
J∏

j=1

[1 + e−aj (θp−bj ) − e−λ(bj −τp)·I {bj >τp}]1−ypj

1 + e−aj (θp−bj )
,

f (τp|y,η−τp
) ∝

J∏

j=1

[
e−λ(bj −τp)·I {bj >τp}]ypj

·
J∏

j=1

[
1 + e−aj (θp−bj ) − e−λ(bj −τp)·I {bj >τp}]1−ypj

· e
−1

2(1−ρ2)
[ (τp−μτ )2

σ2
τ

− 2ρθp(τp−μτ )

στ
]
,

f (bj |y,η−bj
) ∝

P∏

p=1

[
1

1 + e−aj (θp−bj )

]ypj

·
P∏

p=1

e−λ(bj −τp)·I {bj >τp}·ypj

·
P∏

p=1

[
1 + e−aj (θp−bj ) − e−λ(bj −τp)·I {bj >τp}

1 + e−aj (θp−bj )

]1−ypj

· e
−(bj −μb)2

2σ2
b .

Take θp for example. Sample the candidate θ∗
p from N(θ

(t)
p , cθ ), and the chain of θ

(·)
p

‘jumps’ to θ∗
p with probability

min

{ f (θ∗
p|y,η

(t)
−θp

)

f (θ
(t)
p |y,η

(t)
−θp

)
,1

}
,

otherwise, θ
(t+1)
p = θ

(t)
p . Sampling schemes for τp and bj are similar to that of θp and are

omitted here.
• For positive quantities aj , λ and σ 2

τ : a lognormal jumping proposal is adopted for the
Metropolis–Hastings algorithm. Their full conditionals are
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f (aj |y,η−aj
) ∝

P∏

p=1

[1 + e−aj (θp−bj ) − e−λ(bj −τp)·I {bj >τp}]ypj

1 + e−aj (θp−bj )
· e

−aj
βa ,

f (λ|y,η−λ) ∝ e
−λ

∑P
p=1

∑J
j=1(bj −τp)·I {bj >τp}·ypj

·
P∏

p=1

J∏

j=1

[
1 + e−aj (θp−bj ) − e−λ(bj −τp)·I {bj >τp}]1−ypj · e −λ

βλ ,

f
(
σ 2

τ |y,η−σ 2
τ

) ∝ 1

σ 2
τ

(α0+ P
2 +1)

· e
−1
σ2
τ

[β0+
∑P

p=1(τp−μτ )2

2(1−ρ2)
]+ 1

στ
[
∑P

p=1 ρθp(τp−μτ )

1−ρ2 ]
.

Take λ for example. Sample the candidate λ∗ from Lognormal(logλ(t), cλ), and the chain
of λ(·) ‘jumps’ to λ∗ with probability

min

{
f (λ∗|y,η

(t)
−λ) · λ∗

f (λ(t)|y,η
(t)
−λ) · λ(t)

,1

}
,

otherwise, λ(t+1) = λ(t). Sampling schemes for aj and σ 2
τ are similar to that of λ and are

omitted here.
• For ρ: we first transform ρ into the real number scale,

ζ = log

(
1 + ρ

1 − ρ

)
,

and the Metropolis–Hastings algorithm is then implemented on the new scale. The full
conditional for ρ is

f (ρ|y,η−ρ) ∝ (
1 − ρ2)−P 2

2 · e
−1

2(1−ρ2)
·∑P

p=1(θ
2
p+ (τp−μτ )2

σ2
τ

)

· e
−1

2(1−ρ2)
·( −2ρ

στ
)·∑P

p=1 θp(τp−μτ ) · I {−1 ≤ ρ ≤ 1}.
As to the sampling scheme, first, consider a random walk jumping proposal Jt (·|·) on the
scale of ζ :

Jt

(
ζ ∗|ζ (t)

) ∼ N
(
ζ (t), cρ

)
. (7)

By change of variable, the jumping proposal Jt (ρ
∗|ρ(t)) can be obtained from (7). Sample

the candidate ζ ∗ from N(log 1+ρ(t)

1−ρ(t) , cρ), and the chain of ρ(·) “jumps” to ρ∗ = 2 exp(ζ ∗)
1+exp(ζ ∗)

with probability

min

{
f (ρ∗|y,η

(t)
−ρ) · (1 + ρ∗)(1 − ρ∗)

f (ρ(t)|y,η
(t)
−ρ) · (1 + ρ(t))(1 − ρ(t))

,1

}
,

otherwise, ρ(t+1) = ρ(t).

The full conditionals for other components in η are standard as follows:

• For μτ , sample μ
(t+1)
τ from

N

(
σ 2

0
(t)

(
∑P

p=1 τ
(t)
p ) + μ

(t)
0 (1 − (ρ(t))

2
)σ 2

τ

(t) − σ
(t)
τ σ 2

0
(t)

ρ(t)(
∑P

p=1 θ
(t)
p )

P · σ 2
0

(t) + (1 − (ρ(t))2)σ 2
τ

(t)
,

(1 − (ρ(t))
2
)σ 2

τ

(t)
σ 2

0
(t)

P · σ 2
0

(t) + (1 − (ρ(t))
2
)σ 2

τ
(t)

)
.
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• For μb , sample μ
(t+1)
b from

N

(
σ 2

2 (
∑J

j=1 b
(t)
j ) + σ 2

b

(t)
μ2

σ 2
b

(t) + J · σ 2
2

,
σ 2

b

(t)
σ 2

2

σ 2
b

(t) + J · σ 2
2

)
.

• For σ 2
b , sample σ 2

b

(t+1)
from

Inv-Gamma

(
α1 + J

2
, β1 + 1

2

J∑

j=1

(
b

(t)
j − μ

(t)
b

)2

)
.

• For βa , sample β
(t+1)
a from

Inv-Gamma

(
α2 + J,β2 +

J∑

j=1

a
(t)
j

)
.

• For βλ, sample β
(t+1)
λ from

Inv-Gamma
(
α3 + 1, β3 + λ(t)

)
.

• For μζ , sample μ
(t+1)
ζ from

N

( log(
1+ρ(t)

1−ρ(t) )σ
2
3 + σ 2

ζ

(t)
μ3

σ 2
ζ

(t) + σ 2
3

,
σ 2

ζ

(t)
σ 2

3

σ 2
ζ

(t) + σ 2
3

)
.

• For σ 2
ζ , sample σ 2

ζ

(t+1)
from

Inv-Gamma

(
α5 + 1

2
, β5 + 1

2

(
log

1 + ρ(t)

1 − ρ(t)
− μ

(t)
ζ

)2)
.

• For μ0, sample μ
(t+1)
0 from

N

(
σ 2

0
(t)

μ1 + σ 2
1 μ

(t)
τ

σ 2
0

(t) + σ 2
1

,
σ 2

0
(t)

σ 2
1

σ 2
0

(t) + σ 2
1

)
.

• For σ 2
0 , sample σ 2

0
(t+1)

from

Inv-Gamma

(
α6 + 1

2
, β6 + 1

2

(
μ(t)

τ − μ
(t)
0

)2
)

.

• For β0, sample β
(t+1)
0 from

Gamma

(
α0 + α4,

σ 2
τ

(t)
β4

σ 2
τ

(t) + β4

)
.

Notice that the full conditional f (x|η−x) is usually a product of many terms. A good tip
to avoid numerical problems during implementation is to work on the log scale in both the nu-
merator and the denominator first for computing the acceptance ratio in the Metropolis–Hastings
procedure.
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