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Appendix 1 Assessment of Differential Item Functioning
CAOC Items :
Item : Pessimism L Wen-Chung Wang
1 Most of the programs that are supposed to solve problems around here will not do o Hong Kong Institute of Education
much good.
3 Attempts to make things better around here will not produce good resulis.
5 Suggestions on how to solve problems won’t produce much real change. i This study addresses several important issues in assessment of differential item functioning (DIF). It starts
7 Plans for future improvements will not amount to much. with the definition of DIF, effectiveness of using item fit statistics to detect DIF, and lingar modeling of DIF in
i dichotomous items, polytomous items, facets, and testlet-based items. Because a common mettic over groups
Dispositional Attribution o of test-takers is a prerequisite in DIF assessment, this study reviews three such methods of establishing a com-
o Th I ible f Wi bl d here d hard h 3 mon metric: the equal-mean-difficulty method, the all-other-item method, and the constant-item (CI) method.
¢ peaple responsible lor solving problems around here do not iry hard enoug A small simulation demonstrates the superiority of the CI method over the others. As the CI method relies on a
to solve them. L correct specification of DIF-free items to serve as anchors, a method of identifying such iterss is recommended
4 The people responsible for making improvements do not know enough about what ik and its effectiveness is illustrated through a simulation. Finally, this study discusses how fo assess practical
they are doing. .:-.3';; : significance of DIF at both item and test levels.
6 The people responsible for making changes around here don’t care enough about
their jobs.
8 The people responsible for making changes around here do not have the skilis
needed to do their jobs.

* deleted and do not form part of the revised 3 item sub-scales,
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In recent years, the assessment of dif-
ferential item functioning (DIF) (Holland and
Wainer, 1993) has become a routine practice
of item analysis. Many commercial tests have
undergone comprehensive DIF analysis before
being released, especially high-stakes tests. DIF is
also a very popular topic of academic research. A
survey of DIF entries on the PsycINFQ database
yields 427 journal articles up through 2007, This
chapter not only provides an introduction to DIF
analysis, but it also addresses several complicated
issues on DIF analysis that should be more fully
investigated. In particular, this chapter makes a
distinction between item raisfit and DIF. Through
simulation studies, this chapter demonstrates that
the standard item infit and outfit statistics (Wright
and Masters, 1982) are not powerful enough to
detect DIF. Hence, more advanced detection
methads are needed. This chapter develops a
theoretical framework to model DIF in dichoto-
mous items, polytomous items, facet structures,
and testlet-based items in which one or multiple
grouping variables with more than two categories
are simultaneously analyzed.

In DIF analysis, different groups of test-
takers need to be placed on the same metric such
that their responses to-a studied item (the one to
be detected for DIF) can be compared. Otherwise,
DIF detection is, by definition, impossible. A
common metric over groups, or a matching vari-
able as it is used to match test-takers with identical
latent trait levels, is a prereguisite of DIF analysis.
Three major methods of establishing a common
metric over groups have been developed. Two
of them, although widely employed in practice
and implemented in computer programs such
as ConQuest (Wu, Adams, and Wilson, 1998)
and Winsteps {Linacre, 2003), are based on as-
sumptions that are too stringent to implement in
reality. The third method, although not as widely
recognized and practiced, yields appropriate DIF
detection as long as one DIF-free item is chosen
to function as an anchor such that a common
metric can be established, In this chapter, the
liritations and advantages of these three methods

"in establishing a comumon metric over groups are
not only clarified but also demonstrated through

a sithulation study. Through the analysis of a
simulated data set, this chapter demonstrates an
iterative procedure to locate a set of DIF-free
items needed for the third method. Finally, in
addition to appraising the statistical significance
of DIF, this chapter explains how to ascertain
the practical significance of DIF at item level
and test level.

A Definition of DIF

An itemn is said to exhibit DIF when it func-
tions differently for different groups of test-takers.
Specifically, it occurs when test-takers having
identical levels on the latent trait that the test was
designed to measure but belonging to different
groups, have different probabilities of endorsing
{or answering correctly) a particular item. For
example, an item that is intended fo measure
mathematical proficiency may contain slang that
is unintelligible to people from minority groups,
such that a minority test-taker would have a lower
probability of answering that item correctly than
would a majority test-taker, even they both pos-
sesses equal proficiency in mathematics. When a
test contains DIF items, strictly speaking, the test
no longer measures the same construct for differ-
ent groups of test-takers and the test scores canno
longer be considered comparable over groups. In
other words, the test is not invariant. However, a
real test can never be perfect and always contains
DIF to some degree. In practice, as long as the
magnitude of DIF is reasonably smali, then the
test is practically invariant.

In a typical DIF study, the item responses
of two groups of test-takers are examined: a
reference group, which is often the majority, and
a focus group, which is often the minority. The
grouping variable in DIF assessment, although
usually bi-categorical, can be multi-categorical
(e.g., ethnicity) or even continuous (e.g., age).
Moreover, the grouping variable does not need
to be a demographic category {e.g., gender,
ethnicity, or socio-economic status). It can be
any variable of interest. Many tests, for example,
have two delivery systems: paper-and-pencii and
computer-based testing. It is highly desirable to
maintain construct invariance over the delivery

AssessMENT Or DirrereNTIAL ITEM FUNCTIONNG 389

systems. In this case, delivery system: is the group-
ing variable. Today, many countries participate in
international large-scale educational assessment,
stch as the Programme for International Student
Assessment and the Trends in International
Mathematics and Science Study. It is important
to ensure that the test is invariant over couniries
such that international cotnparison is possible.
Here, country is the grouping variable,

It is important to make a distinction between
DIF and misfit. Item misfit can have many causes,
such as local dependence, multidimensionality,
inappropriate discrinination power, guessing, etc.
in confrast, an item that exhibits DIF functions
differently for different groups of test-takers.
Within the context of Rasch measurement (Rasch,
1960), or item response theory (IRT; Lord, 1980),
an item is said to exhibit DIF when it meets the
model’s expectation reasonably well for each
group of test-takers, but does not have the same
parameters for different groups. In accordance
with this definition, one might conduct a Rasch
analysis of the whole data set (including all groups
of test-takers) and a separate Rasch analysis of
the data set for each group. If an item is found to
be poor-fitting in the whole data set or within any
group of test-takers, it should be removed from
subsequent DIF analysis. This procedure ensures
that item parameter estimates obtained from each
group are meaningful and may be compared for
evidence of DIF.

One might speculate whether the standard
item infit and outfit statistics can detect DIF since
DIF is actually a type of model-data misfit. In
the event they can, practitioners might simply
complete a single Rasch analysis of the entire
data set and use the resulting statistics to identify

poor-fitting items. Unfortunately, the results of
studies that have attempted to detect DIF via
fit statistics are disappointing. Fit statistics are
used to assess the overall degree to which an
jtem meets the model’s expectation. If an item
fits the model’s expectation reasonably welt
within groups, but also has different parameters
for different groups (a definition of DIF), then fit
statistics will not be powerful enough to detect
such model-data misfit (Smith, 1994, 1996; Smith
and Suh, 2003). In order to verify this argument,
data for a 50-item test is simulated according to
the Rasch model where both the reference and
focal groups consist of 500 persons. Item 25 is
simulated to have DIF: it has a difficulty of 0
logits for the reference group and 1 logit for the
focal group. The other 49 items are all simulated
as DIF-free. The Rasch model is then fitted to the
whole data set (i.e., 1000 persons) using Winsteps
and ConQuest. Table 1 summarizes the infit and
outfit mean square error statistics for the 50 items.
The infit and outfit mean squate exrors for item
25 are 1,03 and 1.00 given by Winsteps and 1.03
and 1.01 given by ConQuest. These statistics-are
very similar to those of the DIF-free items and
therefore in this case, the infit and outht statistics
are not powerful in detecting DIF.

Linear Modeling of DIF

In addition to statistically testing the differ-
ence in item parameter estimates between groups
for evidence of DIF, one can develop a model to
take into account the effect of grouping variables
on item parameters. Such a modeling makes DIF
analysis more structural and general, especially
in complicated testing situations (Wang, 2000a,
2000b, 2000c). In order to begin, assume there

Table 1
Infit and outfit mean square ervors for the simulated 50-item test in
which item 25 has DIF
WINSTEPS CONQUEST

Infit Outfit Infit Qutfit
Mean 1.00 1.00 1.00 1.00
Maximum 1.06 113 1.08 1.10
Minimum 0.4 0.91 0.93 0.91
ftam 25 1.03 1.00 1.03 1.0t
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are aset of G{g=1, ..., &) groups of test-takers
of interest for DIF. For a dichotomous item,
assume the Rasch model holds for every group
of test-takers:

(pmf/pﬂr(}) 9 ‘B:g: (I)

wherep | is the probability of answering correctly
(or endorsing) item i for person » with a latent
traitlevel of 0 ; p . is the probability of answering
incorrectly; and Big is the difficulty of item 7 for
group g. The subscript ig for the difficulty pa-
rameter suggests that DIF is a form of item-group
interaction. DIF detection therefore tests whether
the difficulties are all identical over groups:

By =..=Bg. @)

Statistically, one can form two nested models—a
full model in which each group has its own item
parameter of that studied item, and a reduced
model in which all groups are restricted to the
sarne item parameter-—and then apply the likeli-
hood ratio test to test their difference. If the two
models are statistically significantly different,
then the studied itern is said to have DIF (Thissen,
Steinberg, and Wainer, 1988; Wang and Chang,
1998; Wang and Yeh, 2003).

In a typical DIF analysis, there is a reference
group (usually the majority) and a focal group
(usually the minority). In practice, more than two
groups are sometimes of interest for DIF, such as

multiple ethnic groups. If one employs standard
two-group methods, one can compare item param-
eter estimates over groups pairwise, two groups
at a time, or set one group 4s the reference and
compare every other group with this reference for
DIF. This procedure, analogous to multiple two-
group #-tests, is not only cumbersome, but also
statistically inefficient. As analysis of variance
(ANOVA) is more powerful than multiple two-
group -tests, so too is the simultaneous testing
of Equation 2 with the likelihood ratio test more
powerfu! than traditional pairwise procedures.

Figure 1 presents the itern response functions
inwhich the item difficulties for the reference and
focal groups are 0 and 0.5 logits, respectively. The
DIF amount for this item, defined as the difference
in the item parameters between groups, is 0.5
logits (a positive value indicates the item favors
the reference group). The larger the DIF amount,
the greater the difference between the two func-
tions. Figure 1 also suggests that it is justifiable
to compare the difference in the item parameters
between groups for evidence of DIF only when
the item meets the model’s expectation reasonably
well for each group of test-takers. Otherwise, the
item parameters for individual groups would be
meaningless,

The parameter B, in Equation 1 can be re-
parameterized as a mean plus a deviation from
the mean:

; . .
|— Reference - - - Focal.

i

0.5

"""""""

Probability (Expected Score)

Latent Trait

espectively:

Item Tesponse fu” tiotis in whmh the reference and focal groups have a difficulty of 0 and 0.5 logits,
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B, =B +b,, €)

§:gbm::0, 4)

where B, denotes the grand difficulty of item i,
and b, denotes the effect of group g on item i.
Equation 4 indicates that the sum of the deviations
from the mean is equal to zero. Testing the null
hypothesis of Equation 2 is equivalent to testing
the following null hypothesis:

by =..=b,=0. (5)

[f there are only two groups, then 2b is the
difference in item parameters between groups
which describes the DIF amount of that item.
Equation 3 is analogous to the structural model in
one-way ANOVA. The major difference between
the two is that the former does not incorporate
an error term whereas the latter does. In spite of
this difference, the two may be considered to be
conceptually equivalent.

Equation 3 involves only 2 single grouping
variable. In practice, there may be more than one
grouping variable of interest, such as ethnicity,
gender, location, country, culture, etc. Although
it is possible to combine all grouping variables
into one single variable and conduct DIF analysis
as described above, important information
concerning the contribution of each grouping
variable to DIF then becomes invisible. In order
to retrieve this information, another kind of
modeling is required. Just as one-way ANOVA
can be extended to factorial ANOVA when there
are multiple independent variables such that main
effects and interaction effects on the dependent
variable can be partitioned, so too can Equation
3 be expanded.

Suppose there are two grouping variables X and
Y indexed as g and A, respectively. Let B, denote
item #’s difficulty for a group whose membersmp is
gh. If one adopts the structural formulation in linear
models, one has

Bl'gh = ‘B.E +xjg +yih + (xy)igh H (6)

ngig - Zhy."k
- Zg ('xy)x‘gh
=, @) =0, 0

where B, denotes the grand difficulty of item ;, Xy
denotes the “main” effect of X on the dlfﬁculty
of item i, y, denotes the “main” effect of Y, on
the difficulty of item 7, and (xy)g denotes the

“interaction” effect of X by ¥, on the difficulty
of item /. Equation 7 1nd:cates that the sum of the
deviations from the mean is equal to zero. The
likelihood ratio test can be employed to test the
statistical significance of the main and interaction
effects. Equation 6 can be directly generalized
with three or more grouping variables. This linear
modeling of DIF allows one to obverse closely
the sources of DIF and determine whether the DIF
comes from the main effect of grouping variable
X, or ¥, or their interaction.

Polytomous Items

The linear modeling of DIF can also be
applied to polytomous items. Assume that the
partial credit model (PCM; Masters, 1982) holds
for each group of test-takers, such that

In (me/ p’”'(j*"l))g =0,~ ( + C,,g) (&)

where Py andp - 2F the probabilities of scoring
Jandj~ 1 onitem 7 for person r with a latent trait
level of§ ; 3 B, is the overall item difficulty of item
ifor group g and C, o 15 the jth threshold difficulty
of item i for group g As in Equation 3, the item
parameters in Equation 8 can be re-parameterized
as a mean plus a deviation from the mean:

B, =B +b,, )
Cho=C,+c,, (10)

ig

205 =224 =0, (an

where B, is the grand overall difficulty of item i,
b, is the effect of group g on the overall difficulty
of item i, C, is the grand threshold difficulty of
step j in item 7, and ¢, 1s the effect of group g on
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the jth threshold difficulty of item /. Equation 11
indicates that the sum of the deviations from the
mean is equal to zero. Note that if the subscript /
in C‘ of Equation 8 and the subsequent equations
is dropped then the PCM becomes the rating scale
model (RSM; Andrich, 1978). Equation 8 and the
subsequent equations can be easily generalized to
incorporate multiple grouping variables, such as
Equation 6 for dichotomous iterms. The likelihood
ratio test can be employed to test the statistical
significance of the main and interaction effects.

Facets

The above equations involve only two facets,
person and item. In some testing situations, addi-
tional facets may be involved. For example, when
constructed-response items are judged by raters,
in addition to the two facets of person latent trait
and item difficulty, rater severity might also play
a role in determining the item response {score)
for a specific person on a specific item. In such
a case, rater is the third facet. The facets model
(Linacre, 1989} is especially suitable for this type
of data (Lunz, Wright, and Linacre, 1990; Myford
and Wolfe, 2003, 2004},

Assume that the three-facet model holds for
every group of test-takers:

In (pny'ft /pm'(j~l)k )
=0,~(B, +C;, )= D, (12)

iz

where p ., and p .. are the probabilities of
scoringf and j — 1 on item 7 for person # in group
g with a latent trait level of § , when judged by
rater k, B, is the overall item difficulty of item
i for group g, C, is the jth threshold difficulty
of item ¢ for group g, and D, is the severity of
rater k. Equations 9 through 1 can be directly
incorporated into Equation 12 for DIF detection.
Equation 12 can also be extended to incorporate
multiple grouping variables.

The rater severity D, in Equation 12 is as-
sumed to be independent of items and grouping
variables. Sometimes, raters may exhibit different

egrees of severity in judging different items or
diffBi' t groups of test-takers and there may be
_ n_teractlon rater-group interaction
“(e.g., some raters may favor those test-takers with

the same ethnicity as theirs), or even rater-item-
group interaction. Equation 12 canbe extended to
take these interactions into account by replacing
D, in Equation 12 with D, (for item-rater interac-
tion), D, (for rater-group interaction), or I, (for
item-rater-group interaction). The likelihood ratio
test can be applied to test whether these interac-
tions are statistically significant.

Testlet-based Items

Testlet designs have been widely used in
educational and psychological tests. A testletis a
bundle of items that share a common stimulus or
other common feature, e.g., a reading comprehen-
sion passage or a figure. Another name for a testlet
is an item bundle. Standard Rasch models have
been extended to testlet-based items by adding
an additional variable to account for possible
inferaction between items and persons within a
testlet, one variable for each testlet (Wang and
Wilson, 2005b). Specifically, the Rasch model for
dichotomous itermns may be extended as

In (pm'l /pm'()) = 9» - ‘Bi + Vdiiys (13)

wherep, andp . are the probabilities of scoring 1
and 0 in item i for person », respectively; and ~
represents the interaction effect between item § and
person » within testlet 4 For polytomous testlet-
based iters, one may add an additional variable to
the PCM (or RSM) to account for possible interac-
tion between items and persons within a testlet;

In (pm'f' / p»fu—}))
=8, = (B, + C, J Yoair (14)

where B, is the overall item difficulty of item £
and ij is the jth threshold difficulty of item . For
model identification and ease of interpretation,
we assume:

Vudtty ™ N(()’U"zmn ), (15

and the latent trait § and the random testlet
variables ~s are all independent. The variance
indicates the amount of interaction effect
between items and persons within a testlet. If
0'2 N is equal to zero, Equations 13 and 14 then
become the standard Rasch model and the PCM,
respectively.
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In order to detect DIF in testlet-based items,
assume the testlet model holds for each group of
test-takers:

Lﬂ (pm'} /pru‘(l )g = 9.': - Big + ’}’nd(i) H (1 6)
m(pﬂij / Prigj- 1))
(B +C‘rf‘;)+7n¢l(x’) ? (17)

where Big 1s the difficulty of item i for group g;
C,-,—g is the /% threshold difficulty of iter i for group
£; and the others are defined as above. As usual,
the linear modeling of DIF can be applied to B,
and €, and they can be extended to incorporate
maltiple grouping variables (Wang and Wilson,
2005a).

The linear modeling of DIF is conceptually

equivalent to the linear logistic test modei (LLTM, -

Fischer, 1973) and the facets model {Linacre,
1989), in that the item parameter is modeled by
a linear combination of a set of variables. In this
study, the variables are grouping variables; in the
LLTM, they are item features; and in the facets
model, they are facets. For a discussion of the
relationship between these models, the reader
should see De Boeck and Wilson (2004).

It should be noted that the establishment
of a complicated model (e.g., a model with
DIF parameters, item-rater-group interactions,
or testlet effects) to account for data should be
taken as a means, not an end. In general, the more
complicated a model that is needed to account for
test data, the poorer the quality of measurement,
the more difficult the interpretation of the test
scores, and the less generalizable the findings
will be. In effect, complicated models shouid be
employed to diagnose sources of noise in test data
{e.g., DIF) and to identify possible test revisions
for better quality measurement, rather than to
simply describe the data.

Three Methods of Establishing
a Common Metric over Groups

By definition, an item has DIF when fest-
takers having identical lateni trait levels but
belonging to different groups have different
probabilities of endorsing an item. According
to this definition, person measures of the latent

trait should be known a priori so that test-takers
from different groups can be matched according
to their measures, and then their responses to the
studied item can be compared for evidence of DIF.
In order to obtain person measures, a perfect test
{one that does not contain any DIF items) that
measures the same latent trait as the studied item
must be administered to the test-takers. Note that
this “external” test should not contain any DIF
itemns; otherwise, it measures qualitatively differ-
ent latent traits for different groups of test-takers
and thus the establishment of a common metric
is not possible. By “perfect,” we do not mean an
absolute sense; rather, we mean that the DIF in
the external test should be negligible in practice.
Unfortunately, such an external test is unlikely to
exist in practice.

In most practical cases of DIF studies, no
external perfect tests are available to establish a
common metric. Instead, a common metric must
be established through the studied test itself, which
is called the “internal” matching variable (Welch
and Miller, 1995), If the siudied test, serving as a
matching internal variable, contains DIF items,
then DIF analysis is based on a biased matching
variable. If the internal matching variable is free
from DIF {meaning that the studied test does not
contain DIF items), then DIF analysis is no longer
necessary, which is a problem of circularity.

There are three major methods of establish-
ing a common metric in DIF detection through the
use of an internal matching variable, namely, the
equal-mean-difficulty (EMD), the ali-other-itemn
(AQOI), and the constant-item (CI) methods (Wang
and Yeh, 2003; Wang, 2004). Different methods
often lead to different results in DIF detection.
Practitioners often rely on computer programs
to detect DIF without knowing what method is
actuaily employed in the programs to establish a
common metric. The EMD method and the AOI
method are more popular than the CI method,
especially in the context of Rasch measurement
or IRT. The EMD method, for example, is
implemented in the computer programs ConQuest
and Bilog-MG (Zimowski, Muraki, Mislevy, and
Bock, 1996} and the AOI method is implemented
in Winsteps, such thaf users can easily perform
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DIF detection with simple commands. In addition
to these computer programs, the Mantel-Haenszel
{Holland and Thayer, 1988) and logistic regres-
sion {Swaminathan and Rogers, 1990) DIF
detection techniques can be viewed as examples
of the AOI method, in which raw test score is used
to establish a common metric over groups. Waller
(1998) developed the computer program EZDIF
to facilitate the use of the Mantel-Haenszel and
logistic regression methods. The popularity of
the EMID and AQI methods does not necessarily
Justify their use.

The EMID Method

Assume a typical testing situation in which
a test is administered to a reference group and a
focal group and all iterns need to be examined for
DIF. In the EMD method, as its name implies, the
mean item difficulty of the test is constrained to
be equal across groups. In introducing this con-
straint, the user assumes that a correct common
metric has been established and the difference
in the item parameter estimates between groups
can be directly compared to detect DIF. The
EMD method is simple and easy to implement.
A common way of employing the EMD method
is to conduct separate Rasch or IRT calibrations,
one for each group, and then directly compare
the differences in the item parameter estimates
between groups. By default, the mean difficulty
in a Rasch or IRT calibration is often set at zero
for model identification and the EMD method is
automatically actualized in separate calibrations,
The use of separate calibrations in DIF detection
can be dated back to Wright, Mead, and Draba
{1976) and Wright and Stone (1979). In order to
reduce the burden of running separate calibra-
tions, ConQuest and Bilog-MG implement the
EMD method in such a way that users are able to
perform DIF analysis with one single command
file,

By definition, the agsumption of equal mean

- difficulty between groups holds only when either:

a) the.test does not contain -any DIF items, or

(b) th't_é:t_es_t'_cga_ﬁai_ﬂ_s_ multiple DIF items in which

ome favor one group and the other DIF items
' ¢ other o by exactly the same amount

such that the mean difficulties for the two groups
are identical. However, these two conditions are
highly unlikely to occur in reality. If there is
only one single DIF item in the test, the mean
difficulties of the two groups will never be equal.
Moreover, the more DIF items favoring one group
{often the reference group), the greater the sever-
ity of the false assumption, and thus the worse
the EMD will perform. A direct consequence of
employing the EMD method to detect DIF in any
imperfect test {real tests are always imperfect) is
that approximately one haif of the items will be
detected as favoring the reference group while the
others will be detected as favoring the focal group.
This is inevitable because the DIF amount in a
test is forced to be balanced between groups, once
the constraint of equal mean difficulty between
groups is imposed (see also Luppescu, 1993},

The AOI Method

In the ACI method, when examining an item
for DIF, all other items in the test serve as an
anchor (i.e., they are all assumed to be DIF-free)
to establish a commeon metric. Unlike the EMD
method where there is only one single common
metric for the whole test, there are as many
common metrics as the number of studied items
{often all items in the test have to be examined
for DIF) when the AOI method is adopted. By
definition, the metrics cannot be simultanecusly
correct, unless they are actually the same. Only
when the test does not contain any DIF items, will
all metrics be identical and pure (not containing
any DIF items) so as to yield appropriate DIF
detection. Under all other conditions, the AQI
method cannot yield correct detection. Within
the context of Rasch measurement or IRT, the
AOI method can be cumbersome, because each
studied item needs a separate calibration. In
order to facilitate the use of the AQI method
and ease the burden of annoying programming,
Winsteps provides user-friendly commands for
such kinds of DIF analysis. The AOI method
has also been incorporated into IRT-based DIF
detection techniques (Bolt, 2002; Cohen, Kim,
and Wollack, 1996; Kim and Cohen, 1998; Wang
and Yeh, 2003).
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The “implicit” assumption of the AQI meth-
od—=all but the studied item are DIF-free—holds
only when: (a) the test does not contain any DIF
items, or (b) the studied item is the only DIF item
in the test. As an example, imagine a test in which
item 1 is the only item that has DIF, When item 1 is
the studied item, the assumption of the AQI method
holds, such that the resuiting DIF detection on item
1 will be correct. However, when another item is the
studied item, the assumption that all other items are
DIF-free no longer holds because item 1 has DIF.
As the number of DIF items in the test increases, so
does the severity of the false assumption, and thus
the worse the AOI method will perform.

Real tests may contain a high percentage of
DIF iters. Using the AOI method, the matching
variable (the one containing all other items) may
be so contaminated by the inclusion of many DIF
items that its DIF detection becomes problematic.
In order to purify the DIF contamination of the
matching variable due to the inclusion of DIF
items, scale purification procedures have been
strongly advocated and widely ermployed (e.g.,
Lord, 1980; Holland and Thayer, 1988). Scale
purification involves the following major steps:

1. Use the AOI method to detect DIF,

2. Remove those items found to exhibit DIF in
the previous step from the matching variable
and examine all items in the test for DIF
again, using the new matching variable.

3. Repeat Step 2 until the same set of items are
found to have DIF or a maximum number of
iterations (say, 20} is reached.

Unfortunately, scale purification procedures can
only partially eliminate the DIF contamination
in the matching variable when a test contains a
high percentage of DIF items. It has been found
that when tests consist of more than 20% or 30%
DIF items, the AOI method with scale purification
procedures, although superior to the AOI method
without scale purification procedures, begins to
yield an inflated Type I error rate and a decreased
power of DIF detection {(Candeil and Drasgow,
1988; Clauser, Mazor, and Hambleton, 1993;
Hidalgo-Moutesinos and Gomez-Benito, 2003;

Navas-Ara and Gdémez-Benito, 2002; Wang and
Su, 2004a, 2004b).

The CI Method

The CI method is not as commonly used as
the other two methods. In the CI method, a set
of items is specified to serve as an anchor set to
establish 2 common metric over groups, and all
other items in the test are then examined for DIF.
This is called the constant-item method because
he same set of items serve as an anchor, no matter
what item is studied. As already discussed, the
matching variable has to be pure, otherwise, the
resulting DIF detection will be misleading. In
other words, only DIF-free items should serve
as an anchor. In general, the more items chosen
to serve as an anchor (assuming they are all DIF-
free), the higher the power of DIF detection will
be, and a 4-item anchor is generally enough to
vield a high power (Thissen et al., 1988; Wang,
2004; Wang and Yeh, 2603). The CI method is
also implemented in non-IRT-based approaches,
such as the SIBTEST method (Chang, Mazzeo,
and Roussos, 1996; Shealy and Stout, 1993}, Us-
ers of SIBTEST have to specify a set of DIF-free
items to serve as an anchor. If the specification is
impossible, then SIBTEST switches to the AOI
method for DIF detection.

Comparison of the Three Methods:
A Simulation Study

In order to demonstrate the advantages and
limitations of these three methods in establishing
a cornmon metric over groups for DIF detection, a
brief simulation: study is conducted. In the follow-
ing section the design, analysis, and hypothesis
of the simulation are described. The results are
then summarized.

Design

Item responses were simulated according
to the Rasch model, in which five items were
administered to a reference and a focal group,
each with a sample size of 5,000. The five item
difficulties were setat—1,~1, 3, I, and 1 logits for
the reference group, and 0,0, 0, 1, and 1 logits for
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the focal group. That is, both items 1 and 2 were
set as favoring the reference group by 1 logit (i.e,,
DIF amount = 1; a positive value indicates the
reference group is favored), and the other three
items were set as DIF-free (DIF amount = (). With
this setting, the mean difficulties for the five items
were 0 and 0.4 logits for the reference and focal
groups, respectively. The test-takers of the refer-
ence and focal groups were sampled from MO,
1} and M(—1, 1), suggesting that the mean ability
difference between the two groups is 1 logit (i.e.,
impact = —1; a negative value indicates the focal
group has a lower mean). The sample sizes of
the two groups were set 50 large that the effect
of sampling fluctuation on parameter estimation
could be reduced and one single replication would
be enough to draw reliable conclusion.

Analysis

After the item responses were simulated, the
EMD, AOI, and CEmethods were applied by using
ConQuest, In the EMD method, the simulated
datasets for the reference and focal groups were
calibrated separately. Since by default ConQuest
sets the mean difficulty at zero for identification,
the EMD method was automatically employed
in separate calibrations, In the AQI method,
the two datasets were combined into one large
dataset. Five calibrations were then made on this
combined dataset, one calibration for each studied
item. In the CI method, five calibrations were
made on the combined dataset, one calibration
for each item serving as an anchor.

Hypothesis

The mean difficulties of the focal and the
reference groups are simulated as 0.4 and 0
logits. Employing the EMD method will force
the 0.4-logit difference in the mean difficulty
between groups to be zero. In order to maintain
a linear relationship between items and persons
within groups, the 1-logit DIF amount for items
- Land 2 will be estimated as 0.6 logits, the O-logit
- DIF amount for items 3, 4 and 5 as ~0.4 logits,
and the —1-logit impact as 1.4 logits.

=i In AOI method, when detecting item 1
for DIF, items 2;'3, 4 and 5 serve as an anchor.

The mean difficulties of the four anchored items
for the reference and focal groups are (.25 logits
and 0.30 logits, respectively. When the four items
serve as an anchor, the §.25-logit difference in the
mean difficulty between groups will be forced to
zero. In order to maintain a linear relationship
between items and persons within groups, the
1-logit DIF amount for item 1 will be estimated as
0.75 logits and the —1-logit impact as —1.25 logits.
Likewise, when item 2 is examined for DIF, the
[-logit DIF amount for item 2 will be estimated
as 0.75 logits, and the —I-logit impact as ~1.25
logit. When examining item 3 for DIF, items 1,
2,4 and 5 serve as an anchor. The mean difficul-
ties of the four anchored items for the reference
and focal groups are 0.0 logits and 0.50 logits.
The (.50-logit difference in the mean difficulty
between groups will be forced to zero when the
four items serve as an anchor. As a result, the
0-logit DIF amount for item 3 will be estimated
as .50 logits, and the -1-logit impact as —1.50
logits. When detecting item 4 (or item 5), the
mean difficulty of the four anchored items for the
focal group is higher than that for the reference
group by 0.5 logits. When the 0.50-logit differ-
ence is forced to zero, the 0-logit DIF amount for
itern 4 (or item 5) will be estimated as —0.50 logits,
and the ~1-logit impact as —1.50 logits.

In the CI method, DIF detection will be
correct if the anchored item is indeed DIF-free.
Specifically, when item 3, 4 or 5 serves as an
anchor, both the DIF detection and the person
parameter estimation will be appropriate. On
the contrary, when item 1 (or item 2) serves as
an anchor, its 1-logit DIF amount will be forced
to zero. In order to maintain a linear relationship
between items and persons within groups, the
I-logit DIF amount of item 2 (or item 1) will
be estimated as 0 logits, the 0-logit DIF amount
for items 3, 4 and 5 as 1 logit, and the —1-logit
impact as -2 logits.

Results

The parameter recovery of the five items and
the person measures for the three methods is sum-
marized in Table 2. When the EMD method was
employed, items | and 2 were estimated as having

AssessMeNT Or DIprrrENTIAL ITEM FuNcTIONING 397

Table 2

Parameter recovery for the three methods when items 1 and 2 in the five-item

test have a DIF amount of 1 logit

ftem1 lem2 Nem3

Mean
tem 4 item 5 Ability Variance

True Parameter {R} —1 -1 [+
True Parameter {F} 0 0 ¢
True DIF Amount / impact 1 1 4
EMD Method

Estimated Parameter {R} ~-1.01 -1.02  0.01
Estimated Parameter {F} -0.41 040 -0.37
Estimated DIiF Amount / impact 0.80 062 -0.38
AQIH Method

Estimaied DI Amount/ impact 0.72 + +
Estimated DIF Amount / impact + 074 +
Estimated DIF Amount / impact i +  =0.58
Estimated DIF Amount / impact + + +
Estimated DIF Amount / impact + + +
Ci Method

Estimated DIF Amount / impact + 002 -09¢
Estimated DIF Amount / Impact -0.02 + =101

Estimated DIF Amount / Impact 089 1.01 +
Estimated DIF Amount / Impact 1.09 1.1 Q.10
Estimated DIF Amount / Impact 1.03 1.06 0.04

1 1 0 1
1 1 -1 1
0 R

1.02 100 000 (.88

057 §6% -1.40 112
~0.45 {339 -1.40

+ + ~1.28 0.95

+ + ~1.28 0.85

+ + =1.58 0.94

-0.61 + -1.562 0.94

+ -0.55 ~1,51 0.94

-1.09 ~1.03 -2.00 0.99
-t11 ~1.05 ~2.01 0.89
-0.10 -0.04 -~1.00 0.89

+ 006 -0.91 0.89
-0.06 +  —0.96 0.99

Note: + anchored; R = reference group; F = focat group.

a DIF amount of 0.60 and 0.62 logits, items 3, 4,
and 5 as having a DIF amount of ~0.38, —0.45,
and -0.39 logits, and the impact as —1.40 logits.
As hypothesized, both the DIF amount and the
impact were underestimated by approximately
0.4 logits. The DIF amount for the five items
added up to zero. This result (some iterns favor
the focal group and others favor the reference
group such that overall neither group is favored)
is ingvitable when the EMD method is applied
to any imperfect test. Using the EMD method,
practitioners may overlook the consequences of
DIF on test fairness and argue that no actions
need to be taken, because overall neither group
is favored nor disfavored.

When the AOI method was employed, as
hypothesized, the |-logit DIF amount for items 1
and 2 were estimated as 0.72 and 0.74 logits, the
0-logit DIF amount for items 3, 4, and 5 as—0.55,
~0.61, and -0.55 logits, and the -1 -logit impact as
-1.26,-1.26, ~1.55, ~1.52, and —1.51 in the five
calibrations. When the Cl method was employed,
the DIF detection and parameter recovery were
of the appropriate values as long as the anchored

itemn was correctly chosen (i.e., item 3, 4, or 5).
It the case when item 3 served as an anchor, the
1-logit DIF amount of items 1 and 2 was estimated
23 0.99 and 1.01 logits, the O-logit DIF amount of
itemns 4 and 5 as —0.10 and -0.04 logits, and the
~1-logit impact as ~1.00 logits. In contrast, when
item 1 or itemn 2 was mistakenly selected as an
anchor, both the estimates for the DIF amount and
impact were rusleading. In the case when item
1 served as an anchor, the 1-logit DIF amount of
item 2 was estimated as 0.02 logits, the 0-logit
DIF amount of items 3, 4 and 5 as -0.99 and ~1.09
and —1.03 logits, and the —1-logit impact as ~2.00
logits. In summary, all the hypotheses about the
three methods were confirmed.

Locating DIF-free Items
to Serve as an Anchor

As demonstrated in the previous simula-
tion, the superiority of the CI method over the
other two methods is possible when a DIF-free
item is correctly selected as an anchor. An im-
mediate question that follows is; how may one
locate a set of DIF-free items to function as an
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anchor in order for the CI method to proceed
appropriately? Non-statistical procedures (e.g.,
content expert review or previous experiences)
might provide some suggestions about which
items are DIF-free. However, relying on solely
non-statistical procedures to locate DIF-free iterns
might be infeasible and potentially controversial.
Statistical procedures together with non-statistical
procedures would provide more comprehensive
information about the location of DIF-free items
than either procedure alone.

In this study, we focused on statistical proce-
dures. The logic is to turn DIF analysis from find-
ing itemns that have DIF to finding items that do
not have DIF. Those methods that can accurately
distinguish DIF items from DIF-free items (i.e.,
high power of DIF detection and well-controlled
Type 1 error rate) are good candidates for the
location of DIF-free items. As indicated in the
literature (Wang, 2004; Wang and Yeh, 2003) and
the demonstration above, the CI method is very
powerful in DIF detection, It seems reasonable
to adopt this method in order to locate a set of
itemns that are the most likely to be DIF-free to
serve as an anchor. Such a statistical procedure,
called the iterative constant-item (denoted as
ICT) procedure, was recently developed (Wang,
Shih, and Su, 2007). It consists of the following
steps:

I. Setitem | as an anchor and assess all other
items for DIF with the CI method; obtain
an estimate of DIF amount for each studied
item.

2. Set the next item as an anchor and assess ail
other items for DIF as in Step 1.

3. Repeat Step 2 until the last item is set as an
anchor.

4. Compute the sum of the DIF amount es-
timates (in absolute value) over iterations
for each item, rank the sum, and select the
desired number of items (e.g., 4) with the
smaliest DIF amount estimates to serve as
an anchor.

'Wé_ng'_e_t_al; (2007) conducted a series of simula-
tions 1o dscertain the accuracy of the ICI proce-
1 cating DIF-free items and found that it

almost always yields a perfect rate of accuracy
when locating one through four DIF-free items;
as DIF amount and sample size are increased, so
is the rate of accuracy; even when tests contain as
many as 40% DIF items, it yields a very satisfac-
tory rate of accuracy, which is also much higher
than the accuracy rate of random selection.

A simulated data set can serve as an example
to demonstrate the ICI procedures. A 40-item test
was generated according to the Rasch model,
in which items 1 through 16 were simulated to
favor the reference group by 0.8 logits and the
other 24 items were DIF-free. The sample sizes
of the reference and the focal groups were both
500, The test-takers of the reference and focal
groups were generated from N(0, 1) and N(-1,
1), respectively. The ICI procedure, implemented
with ConQuest, was applied to this dataset to
locate DIF-free items. The results show that the
first 18 located items were all DIF-free items.
Such a rate of accuracy was extremely high. If
items were randomly selected from a 40-item
test with 24 D{F-free items, then the chances of
correctly locating one, two, three, four, or five
DIF-free items would be .60, .35, .20, .12, and .06,
respectively. The chance of correctly locating 18
DIF-free iterns would be as small as 1.19x10%,
Hence, the ICI procedure yielded a high rate of
accuracy in locating DIF-free items.

Compufer Programs

All the above linear modeling of DIF
{Equations | through 17), the three mesthods
of establishing a common metric and the ICI
procedure can be implemented with ConQuest,
By default, ConQuest adopts the EMD method to
establish a common metric and provides several
annotated examples for standard DIF analysis,
Through manipulation of the design matrix of
ConQuest, more complicated DIF modeling
(e.g., testlet-based items), the CT method, and the
ICI procedure can be carried out. Unfortunately,
this implementation requires a certain level of
sophistication of ConQuest syntaxes and may not
be intelligible to ordinary users. As the importance
of the linear modeling of DIF, the CI method,
and the ICI procedure becomes more widely
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recognized, customized computer programs might
be available in the near future.

In addition to ConQuest, several other
software packages are also available for the
analyses as shown in this chapter, including SAS
NLMIXED (SAS Institute., 1999; Sheu, Chen,
Su, and Wang, 2005; Wolfinger and SAS Insti-
tate., n.d.) and STATA GLLAMM (Rabe-Hesketh,
Skrondal, and Pickles, 2003, 2004; Skrondal
and Rabe-Hesketh, 2004). Based on the author’s
experience, ConQuest is more efficient and user-
friendly than the other two programs. NLMIXED
and GLEAMM have an advantage over ConQuest
in fitting a wider range of models, in addition
to those shown in this chapter. However, since
these two programs are not developed specifically
for DIF detection or Rasch analysis, users need
an even higher level of sophistication of their
syntaxes to carry out such analyses.

Practical Significance of DIF
at Item and Test Levels

ftemn Level

No matter how minute an item’s amount of
DIF, it will be detected as statistically significant
as long as the sample size is sufficiently large.
Thus, in addition to testing the statistical sig-
nificance of DIF, it is also necessary to ascertain
its practical significance. Within the family of
Rasch models, the DIF amount (defined as the
difference in item parameters between groups)
is actually an effect size measure of DIF. A DIF
amount of d logits represents an odds-ratio of
2,727 A DIF amount of 0.5 logits, representing
an odds-ratio of 1.65, is sometimes treated as
a cut-off point for substantial DIF. For polyto-
mous items, cut-off points are more difficult to
determine. There are two kinds of parameters in
a polytomous items—the overall difficulty and
the threshold difficulty, Each kind of parameter
can have different values for different groups of
test-takers, It is not appropriate to apply the same
cut-off point (e.g., 0.5 logits) to these two kinds
of parameters. A DIF amount of 0.5 logits, for
example, in the overall difficulty is much more
influential on the item expected score than on the

threshold parameter. To make things even more
comphicated, polytomous items with different
categories may require different cut-off points. A
DIF amount of 0.5 logits for a polytomous item
with many categories (e.g., 7) may not have the
same meaning as it has for a polytomous item
with few categories (e.g., 3).

For polytomous items, an inspection of item
expected score curves over groups is more helpful
in determining the practical significance of DIF
tharr merely an inspection of the magnitudes of
DIF amount. For example, Figure 2a shows the
item expected score curves on a 3-category item
with a DIF amount of 0.5 logits in the overall
difficulty, and Figure 2b shows the curves for an
item with a DIF amount of (.5 logits in the first
threshold difficulty. Figures 3a and 3b show the
expected score curves for a 7-category item with
the same types of DIF described in Figures 2a and
2b, respectively. In terms of the difference in the
item expected score curves between groups, DIF
in the overall difficulty is more substantial than it
is in the threshold difficulty. Besides, when DIF
occurs in the overall difficulty, one group always
has a higher expected score than the other group,
throughout the latent trait level; whereas when
DIF occurs in the threshold difficulty, one group
has a higher expected score than the other group
only within a certain range of latent trait level. A
comparison of Figures 2 and 3 suggesis that a DIF
amount of 0.5 logits for a 3-category DIF item is
slightly more substantial than it is for a 7-category
item. Practitioners should inspect the pattern of
the item expected score curves over groups, such
as those shown in Figures 2 and 3, to determine
whether the DIF is substantial or not.

Test Level

Test scores or person measures are often used
to make important decisions about individuals
(e.g., admission to colleges, personnel selec-
tion and placement, etc.). Hence, in addition to
examining the practical significance of DIF at
the item level, it is also necessary to ascertain it
at the test level. Two major methods are widely
used. One is to compare the test expected score
curves {also called test characteristic curves) for

"!
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different groups of test-takers, which is referred to
as the assessment of differential test functioning
(Raju, van der Linden, and Fleer, 1995). If the test
expected score curves for different groups are far
apart, then the DIF items are practically signifi-
cant. On the contrary, if the curves nearly overlap,
then the DIF items are not practicatly significant
at the test level, even though the test may contain
ahigh percentage of DIF items that are practically
significant at the item level. The other method
is to compare person measures obtained from a
model in which DIF items are excluded with those
obtained from another model in which DIF items

are not excluded and are treated as DIF-free. If the
person measures obtained from these two models
are very different, then the inclusion of DIF items
substantiaily affects person measures.

In order to explain the procedures of ascer-
taining the practical significance of DIF at test
level, the previous data set (the 40-item test with
16 DIF iterss) is taken as an example. In the previ-
ous simulation, the first four items located by the
ICI procedure are items 33, 24, 20, and 21. All of
them are generated as DIF-free. Only these four
items are selected to serve as an anchor because a
4-itemn anchor is often powerful enough to detect
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DIF (Thissen et al., 1988; Wang, 2004; Wang and
Yeh, 2003), and the more items that are selected
to serve as an anchor, the more likely some DIF
items will be mistakenly selected. These four
items are then used to estabiish a common
metric such that the CI method can proceed to
assess DIF for the remaining 36 items. The true
values and estimates of the DIF amount, and their

standard errors for the 36 items, are listed in the
efi-hand side of Table 3. All estimates for the
DIF amount are very close to their true values.
Besides, those estimates for the first 16 items are
statistically significant (power = 1.00} whereas
those for the remaining 20 items were not (Type
I error rate = .00). Hence, the Cl method together
with a 4-item anchor yields a very accurate DIF
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Figure 2a. Item expected score curves of a 3-category item with a DIF amount of 0.5 logits in the overall dif-
ficulty.
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Figure 2b. ftem expected score curves of a 3-category item with a DIF amount of 0.5 logits in the first threshold

Table 3
True values and estimates of the DIF amount and their stondard ervors for the
Ci and EMD methods
Cl EMD
ltem True Value Estimate SE 4 Estimate SE Z
1 0.80 0.95 017 5.51 0.70 0.15 4,62
2 0.80 0.70 0.16 4.25° 0.45 0.16 310
3 0.80 0.83 0.18 4.5 0.59 0.16 3.57
4 0.80 0.73 0.23 347 0.48 0.21 2.25
5 0.80 0.84 0.23 3.71 0.59 0.21 2.79
8 0.80 1.12 0.26 4,36 0.87 0.24 3.671°
7 0.80 C.61 0.17 3.64° 0.36 0.15 243
8 0.80 0.47 0.17 2.86' 0.23 015 1.53
9 0.80 0.83 0.21 3.88 0.58 0.20 2.93
10 0.80 (.80 0.24 3.38 0.55 0.22 2.48
1 0.80 0.86 0.17 519 0.61 0.15 4.14
12 0.80 0.79 0.17 4.72 0.55 0.18 3.64
13 0.80 0.57 017 343 0.32 0.15 2.18
14 .80 0.71% 0.16 4.33 0.46 0.15 318
15 0.80 0.50 0.18 3.05 0.25 0.14 1.72
16 .80 0.50 0.17 3.04° 0.26 .15 1.73
17 0.00 0.08 0.186 .49 -0.17 0.14 -1.20
18 0.00 0.06 0.16 0.39 =0.19 0.14 ~-1.33
19 0.00 -0.07 0.16 042 -0.32 0.14 219"
20 0.00 0.00+ -0.25 0.14 -1.76
21 0.00 0.00" -0.25 0.14 -1.77
22 0.00 ~0.08 0.16 -0.49 -0.33 0.14 -2.38
23 0.00 ~0.25 019 132 -0.50 017 -2.87
24 0.00 0.00* —-0.25 .14 -1.75
25 0.00 0.14 .16 0.86 0.1 .14 -0.77
26 0.00 «~0.05 616 -0.30 «0.30 0.14 -2.11
27 0.0G -0.34 0.20 -1.67 -0.58 G.18 -3.17
28 0.00 0.14 0.19 0.76 =0.11 G.17 -0.62
29 0.00 -0.11 021 -0.53 (.36 .20 ~1.85
30 0.00 -0.12 016 -0.74 ~0.37 0.14 ~2.61
31 0.00 (.09 019 -0.47 -0.34 0.17 -1.84
3z 0.00 -0.31 016 ~1.88 —0.56 0.15 -3.81
33 0.60 .00 ~0.25 0.16 «~1.69
34 0.60 -0.02 0.18 0.1 -0.27 017 -1.61
35 0.60 -0.34 020 -—-1.71 -0.59 0.18 -3.25
36 0.60 ~0.18 0.16 111 ~0.43 0.14 ~3.04"
37 0.00 -0.03 0.16 -0.16 ~0.27 0.14 -1.96
38 0.00 -0.19 0.18 —-1.05 -0.43 0.16 =271
39 0.00 -0.10 016 ~0.63 -0.35 0.14 2.4
40 0.00 -0.03 016 -0.16 -0.27 0.14 -1.98

* p < .05; * fixed at zero
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assessment. In comparison, the estimates for the
DIF amount obtained from the EMD method are
reported in the right-hand side of Table 3. All the
estimates for the DIF amount are far from their
true values; 13 of the 16 DIF items are correctly
detected as having DIF (power = .82), and 11 of
the 24 DIF-free ifems are incorrectly detected as
having DIF (Type I error rate = .46), Besides, the
estimates for DIF amount of the 40 items sum
to zero, indicating that overall, neither group of
test-takers is favored nor disfavored. This result
certainly contradicts the simulation design.

With the item parameter estimates obtained
from the CI method with a 4-item anchor, the

test expected score curves for the two groups are
shown in Figure 4a. The reference group always
has a higher test expected score than the focal
group, which is expected because all the DIF
items are generated to favor the reference group.
Two test-takers from different groups having the
same latent trait levels can have a difference in
the test expected scores as large as roughly 2.5,
In a scale of 0—40, such a difference is certainly
substantial, especially if the test is of great im-
portance (.., high-stakes),

In comparison, the item parameter estimates
obtained from the EMD method are used to
procduce the test expected score curves for the
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Figure 3a. Item expected score curves of a 7-category item with a DIF amount of 0.5 logits in the overall dif-

ficulty.
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t expected score curves of a 7-category item with a DIF amount of 0.5 logits in the first threshold
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two groups. These two curves, shown in Figure
4b, are visually indistinguishable. Facing such a
figure, one may draw the conclusion that the DIF
in the test is not substantial at all, even though
one realizes from Table 3 that the EMD method
has detected many DIF items. The phenomenon
that the test expected score curves produced
by the EMD method nearly overlap is often a
methodological artifact rather than a reality.

To ascertain how the DIF items affected
person measures, a Rasch model is fitted to the
40-item test in which all items are treated as
DIF-free, and another Rasch model to the 24-item

test in which the detected 16 DIF items (by the
CI method) were excluded and the 24 items are
treated as DIF-free. If these two models yield
very similar person measures, then the inclusion
of DIF items is not practically significant. Figure
5 presents the relationship between the person
measures derived from these two models. A
high degree of variation is found, suggesting the
inclusion of DIF items can substantially alter
person measures. In practice, test scores or person
measures are often ranked in order to make com-
parative decisions {e.g., admission to college).
If the rank orders of person measures obtained
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Figure 4a. Test expected score curves for two groups where the detected 16 DIF items are not excluded using

the CI method with a 4-item anchor,
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Figure 4b, Test expected score curves for two groups where the detected 16 DIF items are not excluded using

the CI method with the EMD method.
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from these two models change substantially, then
the DIF items are practically significant. Figure
6 shows the changes in rank orders (in absolute
value) of person measures, ranging from 0 to 365
with-a median of 48. A total of 217 persons have
arank order change larger than 100. For a sample
size of 1000 persons, such a rank order change is
certainly substantial,

Test scores or person measures are sometimes

used to classify test-takers info a few categories
{e.g., criterion-reference tests). For example,

students are given grades (e.g., A, B, C, and D)
based on their test performances, and individuals
are classified as seriously disturbed, marginally
disturbed, or normal based on their performances
in a clinical psychological assessment. It is
important to ascertain the way in which DIF
jitems affect the classification of test-takers. If
the classification alters substantially before and
after the DIF items are exciuded, then they are
practically significant. To illustrate, suppose
for theoretical or practical reasons, test-takers

4
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Person Measure without DIF Items
Figure 5. Relationship between person measures before and after the detected 16 DIF items are excluded.
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Table 4
Change in the classification of tesi-takers befove and after the DIF items are
excluded
DIF #tems Included
Grade A B G B Total
A i29 31 0 0 160
DIF tems Excluded B 11 279 41 G 331
c 0 48 280 40 368
b 0 G 17 124 141
Total 140 358 338 164 1000

are classified into four categories: A test-taker
receives an A if the measure is above 1 logit, a B
if the measure is between 0 logits and 1 logit, a
C if the measure is between —1 logit and 0 logits,
and a D if the measure is below —1 logit. Table
4 shows the change in the classification before
and after the 16 detected DIF items are excluded.
Altogether, 812 out of 1000 test-takers receive the
same grades and 188 (18.8%) test-takers receive
different grades, yielding a kappa coefficient of
.74. These represent the practical significance of
these DIF items,

Summary

DIF detection is not only a popular research
topic but also a routine component of item
analysis. In the context of Rasch measurement,
DIF detection appears extraordinarily simple
and direct. All one needs to do is to compare the
difference in the item parameters between groups.
This seemingly simple task, however, can involve
many complex issues. The overall item infit and
outfit statistics are not powerful enough for DIF
detection, even though DIF is a sort of item misfit.
When a grouping variable has more than two
categories or there is more than one grouping vari-
able, traditional two-group DIF detection methods
are cumbersome and inefficient. If one adopts
the procedure of factorial ANOVA to linearly
decompose DIF as main effects and interaction
effects of grouping variables, one can better
diagnose sources of DIF. This linear modeling
makes DIF detection more general and gives it
more structure. It can be applied to dichotomous
items, polytonious items, facet structures, and
testlet-based items.

The establishment of a common metric over
groups is a prerequisite of DIF analysis. Oniy if
all test-takers are placed on the same metric can
the difference in the item parameters between
groups be compared for DIF detection. Different
methods of establishing a commeon metric over
groups often lead to quite different results of DIF
detection. Practitioners usually rety on computer
programs to conduct DIF detection without know-
ing which method is actually incorporated in the
program they employ. The EMD method vields
appropriate DIF detection only when the test does
not contain any DIF ttems, or it contains multiple
DIF items in which some of them favor one group
and others favor the other group at exactly the
same amount such that overall the DIF amount is
cancelled out between groups. The AOI method
performs appropriately only when the test does
not contain any DIF items or the studied ftem is
the only item that has DIF. The CI method per-
forms very well as long as one or more DIF-free
iterns are chosen as an anchor,

The ICI procedure performs very well in
locating a set of DIF-free items. The basic idea
is to identify items that are the most likely to be
DIF-free. The ICY procedure is in accordance
with Rasch measurement and is flexible for
complicated item formats (e.g., polytomous items,
facet structures or testlet-based items). In practice,
one may adopt the ICI procedure to locate a set of
items and then request content experts to verify
whether they might have substantial DIF. In short,
DIF detection should consist of two steps: {a)
adopt a procedure (e.g., the ICI procedure) to
locate a set of DIF-free items to setve as an anchor
(content expert approval is recommended), and
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then (b) apply another procedure (e.g., the CI
-method) to detect all other items in the test for
evidence of DIF, This is referred to as the DIF-
free-then-DIF strategy (Wang et al., 2007).

The linear modeling of DIF, the CI method,
and the ICI procedure can be implemented with
computer programs such as ConQuest, NL-
MIXED, and GLLAMM, although certain level
of sophistication of their syntaxes is required. As
these advanced issues in DIF detection become
widely recognized, commercial computer pro-
grams might be available in the near future.

In addition to the detection of the statisti-
cal significance of DIF, it is also necessary to
ascertain its practical significance, both at the
item level and the test level. At the item level,
the DIF amount (i.e., the difference in the item
parameter estimates between groups) is an effect
size measure of DIF. A one logit DIF amount
constitutes an odds-ratio of 2.72. If an item has
a DIF amount greater than a cut-off point (e.g.,
0.5 logits), then it may be removed from the test,
Practitioners should be very cautious when using
cut-off points on polytomous items, because the
overall difficulty and the threshold difficulty may
require different cut-off points. [t is often helpful
to inspect item expected score curves over groups
on the studied item to ascertain whether the DIF is
practically significant, At the test level, an inspec-
tion of the test expected score curves over groups
provides a direct assessment of the practical
significance of a set of DIF items on test scores.
it is also of great value to compare the change in
person measures and classification of test-takers
before and after DIF items are excluded.
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