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DINA Model and Parameter Estimation: A Didactic

Jimmy de la Torre

Rutgers, The State University of New Jersey

Cognitive and skills diagnosis models are psychometric models that have
immense potential to provide rich information relevant for instruction and
learning. However, wider applications of these models have been hampered by
their novelty and the lack of commercially available software that can be used
to analyze data from this psychometric framework. To address this issue, this
article focuses on one tractable and interpretable skills diagnosis model—the
DINA model—and presents it didactically. The article also discusses expectation-
maximization and Markov chain Monte Carlo algorithms in estimating its model
parameters. Finally, analyses of simulated and real data are presented.

Keywords: cognitive diagnosis; skills diagnosis; DINA; Markov chain Monte Carlo;

expectation-maximization; parameter estimation

Cognitive diagnosis models (CDMs) are psychometric models that can be used

to evaluate students’ strengths and weaknesses. These models provide specific

information in the form of score profiles that can allow for effective measure-

ment of student learning and progress, designing of better instruction, and possi-

bly intervention to address individual and group needs. In contrast, traditional

unidimensional item response models (IRMs) are primarily useful for scaling

and ordering students on a latent proficiency continuum. However, the overall

scores provided by IRMs do not contain sufficient information to aid in design-

ing targeted instruction and tailored remediation.

As an alternative to unidimensional IRMs, cognitive and skills diagnosis

models are developed for the purpose of identifying the presence or absence of

multiple fine-grained skills required for solving problems on a test. In the litera-

ture, the presence and absence of skills are referred to as skills mastery and non-

mastery, respectively, and are represented by a vector of binary latent variables.

Thus, instead of a single score, a profile can be generated for a student or a

group of students (e.g., class, district) to indicate which skills each student has

or has not mastered. These profiles contain rich and relevant information that

can have immense practical implications on classroom instruction and learning.

Although researchers and practitioners are becoming aware of CDMs and are

starting to recognize their usefulness in providing rich information, this frame-

work has remained underutilized because of two major limitations. First, as
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compared to traditional IRMs, CDMs such as the DINA (deterministic inputs,

noisy ‘‘and’’ gate), NIDA (noisy inputs, deterministic ‘‘and’’ gate), and repara-

metrized unified models (de la Torre & Douglas, 2004; Hartz, 2002; Junker &

Sijtsma, 2001) are relatively novel and in some cases, more complex (for an

extensive survey of various CDMs and their features, such as nature of underly-

ing construct, response type, dimensionality, see Fu & Li, 2007). Consequently,

many researchers lack familiarity with these models and their properties.

Second, unlike traditional IRMs, which can be analyzed using commercially

available software (e.g., BILOLG-MG; Zimowski, Muraki, Mislevy, & Bock,

1996), accessible computer programs for CDMs are not readily available. As a

result, implementations of these models have been hampered. The goal of this

article is to focus on one particular CDM that is tractable and interpretable—

namely, the DINA model—and show how model parameters can be estimated

using expectation-maximization (EM) and Markov chain Monte Carlo (MCMC)

algorithms. Although computer code based on these algorithms can be obtained

by request, the article provides a reference work for researchers who are inter-

ested in designing new algorithms.

1. The DINA Model

Let Xij be the response of examinee i to item j, i= 1, . . . , I, j= 1, . . . , J, and

let αi = faikg be the examinee’s binary skills vector, k= 1, . . . , K, where a 1 on the

kth element denotes presence or mastery of skill k and 0, absence or nonmastery of

the skill. When a general interpretation is intended, the generic term attribute can

be used to subsume a skill, knowledge representation, or cognitive process. Imple-

mentation of most CDMs requires the construction of a Q-matrix (Embretson,

1984; K. Tatsuoka, 1985), which is a J×K matrix of zeros and ones, and the ele-

ment on the jth row and kth column of the matrix, qjk, indicates whether skill k is

required to correctly answer item j. A Q-matrix can be viewed as a cognitive design

matrix that explicitly identifies the cognitive specification for each item.

To illustrate, consider the mixed fraction subtraction domain at the middle

school level. Mastery of this domain requires students to master the following

set of five skills: subtract basic fractions, reduce and simplify, separate whole

from fraction, borrow from whole, and convert whole to fraction. An item that

has been used in this domain is 73
5
− 4

5
; this item requires the first, third, and

fourth skills to be answered correctly. The rows of the Q-matrix corresponding

to this item would contain the vector (1, 0, 1, 1, 0).

In the DINA gate model, an examinee’s skills vector and the Q-matrix pro-

duce a latent response vector ηi = fZijg, where

Zij =
YK
k = 1

a
qjk

ik : ð1Þ

The latent response Equation 1 assumes a value of 1 if examinee i possesses all

the skills required for item j and a value of 0 if the examinee lacks at least one
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of the required skills. The ‘‘and’’ gate component of the model refers to the con-

junctive process in determining Zij in that a correct response to an item requires

the presence all the prescribed skills for the item. In the example above, students

who lack any one of the three required skills are not expected to answer the item

correctly. Thus, the DINA model exhibits the same property as standard non-

compensatory multidimensional IRMs. If the process is completely determinis-

tic (i.e., error-free or nonstochastic), the latent response vector is identical to the

manifest or observed response vector. However, because the underlying process

is inherently stochastic, the latent response vector represents only an ideal

response pattern. The noise introduced in the process is due to slip and guessing

parameters—that is, examinees who possess all the required skills for an item

can slip and miss the item, and examinees who lack at least one of the required

skills can guess and still answer the item correctly with typically nonzero prob-

abilities. In the DINA model, the slip and guessing parameters of item j are

defined as sj =PðXij = 0|Zij = 1) and gj =PðXij = 1|Zij = 0), respectively. There-

fore, the probability of examinee i with the skills vector αi answering item j cor-

rectly is given by

PjðαiÞ=PðXij = 1|αiÞ= g
1−Zij
j ð1− sjÞZij : ð2Þ

From this equation, answering an item correctly requires an examinee who

has all the necessary skills to not slip and an examinee who lacks at least one of

the required skills to guess correctly. Note that if there is no guessing and no

slippage, the model probability of correct response to an item is either 0 or 1;

that is, the response is solely determined by the interaction of α and the Q-vector

for the item. However, as noted by de la Torre and Douglas (2004), guessing

in this context assumes a general interpretation; it is not confined to a correct

response arrived through a random response but rather includes the use of alter-

native strategies not articulated in the Q-matrix. For example, if an item can be

solved using a different set of skills, examinees who possess these skills but not

those prescribed in the Q-matrix may appear to be guessing but in fact are sys-

tematically solving the problem using a different strategy.

A graphical representation of the DINA model is given in Figure 1. As the

graph shows, the latent response Zij is a function of the examinee’s skills faikg
and the requisites of the item fqjkg. Once Zij has been determined, the probabil-

ity that examinee i will give a correct response to item j is gj if Zij = 0 and 1− sj

if Zij = 1:
The DINA model is a parsimonious and interpretable model that requires

only two parameters for each item (i.e., gj and sj) regardless of the number of

attributes being considered, and despite its simplicity, it has been shown to pro-

vide good model fit (e.g., de la Torre & Douglas, 2004, 2005). De la Torre and

Douglas (2004) and Junker and Sijtsma (2001) provide some applications of

the DINA model. Although labeled differently, other discussions of the DINA
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model can be found in Doignon and Falmagne (1999), Haertel (1989), Macready

and Dayton (1977), and C. Tatsuoka (2002). In is worth noting that although the

DINA model under this formulation can be viewed as an extension of traditional

IRMs (Embretson & Reise, 2000; van der Linden & Hambleton, 1997), it differs

from the latter in some important respects. Primarily, the DINA model deals

with multidimensional binary latent skills, whereas traditional IRMs deal with

unidimensional continuous latent traits. Because the number of skills patterns in

the DINA model is finite, each pattern can be viewed as a latent group or class.

Consequently, the DINA model—and CDMs in general—can also be subsumed

under multiple classification models (Maris, 1999) or restricted latent class mod-

els (Haertel, 1989).

2. Model Parameter Estimation

2.1. Joint Maximum Likelihood Estimation

The DINA model is a conditional distribution of Xij given a skills vector αi.

Assuming conditional independence of the responses given the skills vector, the

conditional likelihood of Xi can be written as

LðXi|αiÞ=
YJ

j=1

PjðαiÞXij ½1−PjðαiÞ�1−Xij , ð3Þ

FIGURE 1. A graphical representation of the examinee i’s response process to item j.
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where Pjðαi) is as defined in Equation 2; assuming further that the examinees

were randomly sampled, the conditional likelihood of the observed data X is

equal to

LðX|αÞ=
YI

i=1

LðXi|αiÞ=
YI

i=1

YJ

j=1

PjðαiÞXij ½1−PjðαiÞ�1−Xij : ð4Þ

If the skills vectors are known, estimating the model parameters β= ðs1,

g1, . . . , sJ , gJ)0 is straightforward. But in practice, the skills vectors are not

known, and one way of estimating β is by joint maximum likelihood estimation,

which allows the simultaneous estimation of the item parameters and the skills

vectors. However, as in traditional IRMs, joint maximization of the structural

parameter β and incidental parameter α may lead to inconsistent b̂ (Baker,

1992; Neyman & Scott, 1948).

2.2. Marginalized Maximum Likelihood Estimation

Instead of working with the conditional likelihood of X to obtain b̂, the maxi-

mization can involve the marginalized likelihood of the data

LðXÞ=
YI

i= 1

LðXiÞ=
YI

i=1

XL

l=1

LðXi|αlÞpðαlÞ, ð5Þ

where LðXiÞ is the marginalized likelihood of the response vector of examinee i,

pðαlÞ is the prior probability of the skills vector αl, and L= 2K . Because the

joint distribution of αl is discrete, taking the weighted sum of the conditional

likelihood across the 2K possible skills patterns is equivalent to integration of

the conditional likelihood over gðy) in conventional IRMs when a unidimen-

sional continuous latent proficiency is involved. Parameter estimation based on

the marginalized likelihood (i.e., the marginal maximum likelihood estimation)

can be implemented using EM algorithm. For details of an algorithm for esti-

mating the DINA model parameters and their corresponding standard errors, see

the appendix.

2.3. Higher-Order DINA Model and MCMC Estimation

To specify a complete latent variable model for cognitive diagnosis, both the

conditional probability of a correct response given an attribution pattern and the

joint distribution of the attribute patterns are needed. In the above specification,

the conditional distribution is given by the DINA model, whereas the joint dis-

tribution is represented by a multinomial distribution. In the latter distribution,

each attribute pattern corresponds to one category. Thus, in implementing the

EM algorithm, the marginalization or expectation step involves updating 2K − 1
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posterior probabilities corresponding to the number of possible skills patterns

minus 1—that is,
PL

l=1 pðαl|XÞ= 1. A model that considers all the possible

latent classes represents the saturated model and is considered the most general

formulation of the joint distribution. However, when the number of attributes is

moderately large, the marginal maximum likelihood estimation involving the

saturated model can be painstakingly slow, if not virtually impossible, because

of memory issues.

A solution proposed by de la Torre and Douglas (2004) to reduce the computa-

tional burden associated with the estimation of the DINA model parameters

involves a modification of the joint distribution of the attributes. Their solution

stems from the observation that the components of α, which can represent know-

ledge states, may be associated with a notion of general intelligence. In addition,

many of the tests used for cognitive diagnosis purposes can be viewed as measur-

ing a small number of general abilities. Thus, the authors proposed a joint

distribution of the attributes where the components of α are assumed to be condi-

tionally independent given a general higher-order latent trait y. One formulation

that they used for the probability of distribution of α conditional on y is

Pðα|yÞ=
YK
k=1

Pðak|yÞ=
YK
k=1

expðl0k +l1yÞ
1+ expðl0k + l1yÞ

, ð6Þ

with the assumption y∼Nð0, 1Þ. That is, the logit of Pðak|yÞ is expressed as a

linear function of y. This formulation is analogous to modeling the probability

of a correct response on an test item using the one-parameter logistic model. By

definition, l1 > 0; thus, Pðak = 1|yÞ. As such, the probability that the attribute is

present given the latent trait increases with y.

In educational applications, the higher-order latent trait y can be interpreted as

a broadly defined general proficiency or overall aptitude in a particular domain.

In the example above, a student’s overall proficiency in fraction subtraction can

correspond to y. Under this setup, students with higher proficiency are also

expected to have greater likelihood of mastering the five skills in this domain.

A higher-order latent trait in conjunction with the DINA model yields a

model referred to as the higher-order DINA (HO-DINA) model. This formula-

tion significantly reduces the computational complexity of the problem: Instead

of estimating 2K − 1 parameters using the saturated model, only K + 1 parameters

(K intercept and 1 slope parameters) are involved; that is, the number of para-

meters grows linearly, not exponentially, with K under this specification of the

joint distribution of the attributes. Although the number of parameters is more

manageable using the HO-DINA model, the EM algorithm does not readily lend

itself to this formulation. Hence, MCMC has been used to estimate the parameters

of the HO-DINA model. De la Torre and Douglas (2004) have shown that the

MCMC algorithm that they proposed for the HO-DINA model can provide

reliable parameter estimates.

de la Torre

120

 at Hong Kong Institute of Education on November 6, 2011http://jebs.aera.netDownloaded from 

http://jebs.aera.net


3. Examples

3.1. Simulated Data

Because the viability of the MCMC algorithm for the HO-DINA model has

already been documented by de la Torre and Douglas (2004), this section

focuses on the feasibility of an EM algorithm for the DINA model. A computer

program based on the algorithm described in the appendix was written in Ox

(Doornik, 2002), an object-oriented mathematical programming language. The

console version of Ox can be downloaded free for academic research and teach-

ing purposes, whereas the EM code can be made available by request.

The simulation data employed 2,000 examinees, 30 items, and 5 attributes,

with all the slip and guessing parameters equal to 0.2. The Q-matrix for this data

is given in Table 1. This setup is similar to that used by de la Torre and Douglas

(2004), except that the joint distribution of the skills patterns were generated

equiprobably from a multinomial distribution. One hundred data sets were simu-

lated and analyzed. On a desktop computer with 3.0 GHz processor and 1 GB of

memory, the estimation took an average of fewer than 18 seconds to run when

the convergence criterion (i.e., maximum difference between previous and

current parameter estimates) was pegged at 0.0001.

Table 2 shows the results for the simulated data, and it gives the mean esti-

mate, root of the mean squared error, and the empirical standard error across the

100 replications. The results indicate that the algorithm can provide accurate

TABLE 1
Q-Matrix for the Simulated Data

Attribute Attribute

Item 1 2 3 4 5 Item 1 2 3 4 5

1 1 0 0 0 0 16 0 1 0 1 0

2 0 1 0 0 0 17 0 1 0 0 1

3 0 0 1 0 0 18 0 0 1 1 0

4 0 0 0 1 0 19 0 0 1 0 1

5 0 0 0 0 1 20 0 0 0 1 1

6 1 0 0 0 0 21 1 1 1 0 0

7 0 1 0 0 0 22 1 1 0 1 0

8 0 0 1 0 0 23 1 1 0 0 1

9 0 0 0 1 0 24 1 0 1 1 0

10 0 0 0 0 1 25 1 0 1 0 1

11 1 1 0 0 0 26 1 0 0 1 1

12 1 0 1 0 0 27 0 1 1 1 0

13 1 0 0 1 0 28 0 1 1 0 1

14 1 0 0 0 1 29 0 1 0 1 1

15 0 1 1 0 0 30 0 0 1 1 1
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parameter estimates. All the parameter estimates, except that of ŝ25 = 0:21, were

identical to the generating values of 0.20. In addition, the mean standard errors

were close to the empirical standard deviations, indicating that the estimated

standard errors faithfully reflect the variabilities of the parameter estimates

across the samples. On the average, the estimated standard error is only about

2% more conservative than the empirical standard error.

TABLE 2
Results of the Simulated Data Analysis

Standard Error

Mean Estimate Mean Empirical

Item g s g s g s

1 0.20 0.20 0.015 0.015 0.014 0.016

2 0.20 0.20 0.015 0.015 0.015 0.015

3 0.20 0.20 0.016 0.016 0.015 0.013

4 0.20 0.20 0.015 0.015 0.015 0.016

5 0.20 0.20 0.015 0.015 0.015 0.014

6 0.20 0.20 0.015 0.015 0.017 0.017

7 0.20 0.20 0.015 0.015 0.014 0.016

8 0.20 0.20 0.016 0.016 0.016 0.014

9 0.20 0.20 0.015 0.015 0.015 0.016

10 0.20 0.20 0.016 0.015 0.015 0.015

11 0.20 0.20 0.011 0.022 0.012 0.021

12 0.20 0.20 0.011 0.022 0.012 0.026

13 0.20 0.20 0.011 0.022 0.011 0.022

14 0.20 0.20 0.011 0.022 0.012 0.021

15 0.20 0.20 0.011 0.022 0.011 0.021

16 0.20 0.20 0.011 0.022 0.011 0.022

17 0.20 0.20 0.011 0.022 0.010 0.021

18 0.20 0.20 0.011 0.022 0.012 0.025

19 0.20 0.20 0.011 0.022 0.012 0.024

20 0.20 0.20 0.011 0.022 0.012 0.021

21 0.20 0.20 0.010 0.030 0.009 0.029

22 0.20 0.20 0.010 0.030 0.011 0.031

23 0.20 0.20 0.010 0.030 0.009 0.031

24 0.20 0.20 0.010 0.030 0.009 0.027

25 0.20 0.21 0.010 0.031 0.009 0.027

26 0.20 0.20 0.010 0.030 0.010 0.030

27 0.20 0.20 0.010 0.030 0.009 0.029

28 0.20 0.20 0.010 0.030 0.011 0.025

29 0.20 0.20 0.010 0.030 0.010 0.029

30 0.20 0.20 0.010 0.030 0.009 0.029
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3.2. Fraction Subtraction Data

The data analyzed in this article are responses of 2,144 middle school stu-

dents to 15 fraction subtraction items measuring the five skills listed above. The

data were originally described and used by K. Tatsuoka (1990) and more recen-

tly by C. Tatsuoka (2002) and de la Torre and Douglas (2004). EM and MCMC

item parameter estimates were obtained for the DINA and HO-DINA models,

respectively. For MCMC, the parameter estimates and the standard errors were

obtained by computing the posterior means and standard deviations. Table 3 gives

the fraction subtraction items and the Q-matrix, and Table 4 offers the EM and

MCMC estimates.

Note that the two algorithms cannot be expected to provide identical results

because of two important differences. First, the joint distribution of the skills in

the DINA model is based on a multinomial distribution, whereas that in the

HO-DINA is based on a higher-order latent proficiency. Second, the DINA esti-

mates were based on the mode (i.e., maximum), whereas the HO-DINA esti-

mates were based on the mean (expected value). Nonetheless, Table 4 shows

that the algorithms for the two formulations of the DINA model provide mark-

ably similar estimates, with the exception of ĝ5, se(ĝ1), and se(ĝ5). This indi-

cates that the use of higher-order proficiency to constrain the joint distribution

of the skills is reasonable for these data. In this example, students with Attri-

butes 1, 3, and 4 can answer Item 12, 73
5
− 4

5
, 87% of the time. In contrast,

TABLE 3
Q-Matrix for the Fraction Subtraction Data

Attribute

Item 1 2 3 4 5

1 3
4

– 3
8

1 0 0 0 0

2 3 1
2

– 2 3
2

1 1 1 1 0

3 6
7

– 4
7

1 0 0 0 0

4 3 – 2 1
5

1 1 1 1 1

5 3 7
8

– 2 0 0 1 0 0

6 4 4
12

– 2 7
12

1 1 1 1 0

7 4 1
3

– 2 4
3

1 1 1 1 0

8 11
8

– 1
8

1 1 0 0 0

9 3 4
5

– 3 2
5

1 0 1 0 0

10 2 – 1
3

1 0 1 1 1

11 4 5
7

– 1 4
7

1 0 1 0 0

12 7 3
5

– 4
5

1 0 1 1 0

13 4 1
10

– 2 8
10

1 1 1 1 0

14 4 – 1 4
3

1 1 1 1 1

15 4 1
3

– 1 5
3

1 1 1 1 0
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students who lack at least one of these attributes can answer the item correctly

only about 3% of the time.

4. Discussion

The article provides a detailed presentation of the DINA model, one of the

most tractable and interpretable CDMs. In addition, it discusses two approaches

in estimating its parameters. Results of simulation studies indicate that the EM

algorithm and the MCMC algorithm discussed here and in de la Torre and

Douglas (2004), respectively, can be used to obtain accurate parameter estimates

of the model. Moreover, the computer codes developed based on these algo-

rithms can be obtained and implemented free of charge. Thus, this research pro-

vides researchers with tools that can allow them to explore the practicability of

the DINA model, which can in turn pave the way for the applications of CDMs

in practical education settings to inform instruction and learning.

This article can be viewed as a first step in studying other issues concerning

the estimation of the DINA model parameters, particularly, those using the EM

algorithm. As noted earlier, this algorithm may become computationally expen-

sive to implement with relatively large K. In addition to the HO-DINA model,

another solution is to constrain the number of permissible skills patterns using

theoretically based hierarchical skills structures, such as those described by

Leighton, Gierl, and Hunka (2004). When such structures are applicable, the

TABLE 4
Results of the Fraction Subtraction Data Analysis (Standard Error in Parentheses)

DINA Higher-Order DINA

Item ĝ ŝ ĝ ŝ

1 0.00 (0.050) 0.28 (0.013) 0.00 (0.004) 0.28 (0.012)

2 0.21 (0.013) 0.12 (0.011) 0.21 (0.012) 0.12 (0.010)

3 0.13 (0.023) 0.04 (0.005) 0.13 (0.027) 0.04 (0.005)

4 0.12 (0.011) 0.13 (0.014) 0.13 (0.009) 0.13 (0.015)

5 0.30 (0.025) 0.25 (0.012) 0.23 (0.035) 0.25 (0.011)

6 0.03 (0.006) 0.23 (0.014) 0.03 (0.006) 0.23 (0.014)

7 0.07 (0.008) 0.08 (0.009) 0.07 (0.008) 0.08 (0.009)

8 0.15 (0.020) 0.05 (0.007) 0.15 (0.022) 0.05 (0.007)

9 0.08 (0.016) 0.06 (0.007) 0.09 (0.018) 0.06 (0.007)

10 0.17 (0.013) 0.07 (0.010) 0.17 (0.012) 0.07 (0.010)

11 0.10 (0.017) 0.11 (0.009) 0.11 (0.017) 0.11 (0.009)

12 0.03 (0.006) 0.13 (0.012) 0.04 (0.007) 0.13 (0.011)

13 0.13 (0.012) 0.16 (0.012) 0.14 (0.010) 0.16 (0.012)

14 0.02 (0.005) 0.20 (0.016) 0.02 (0.005) 0.20 (0.016)

15 0.01 (0.003) 0.18 (0.013) 0.01 (0.004) 0.18 (0.013)
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computational demand in the expectation cycle of the EM algorithm can be

reduced dramatically by properly modifying the algorithm described in the

appendix. For example, when the attributes have a linear structure, the number

of permissible skills patterns reduces to K + 1.

Another issue pertains to the use of a fixed distribution for pðαÞ. That is, the

same multinomial probabilities are used for all the expectation cycles of the

algorithm. However, using empirical Bayes methods (Bradley & Louis, 2000),

these probabilities can be updated in each iteration to more closely reflect the

characteristics of the observed data. Replacing the fixed prior distribution with

the empirical distribution is an option that can be found in calibration software

for traditional IRMs (e.g., BILOG-MG; Zimowski et al., 1996) and provide

more accurate estimates in situations where the assumed examinee distribution

is markedly different from that of the examinee population in consideration. The

EM algorithm in this article can be easily updated to accommodate such an

option.

Finally, as in traditional IRMs, item parameter calibration is deemed only the

first step in the application of CDMs. For CDMs to have greater impact, they

should be able to provide information about students’ knowledge states (i.e., which

skills they have or have not mastered). However, classification of examinees

involves myriad issues, such as attribute pattern identifiability, methods of classi-

fication (maximum likelihood estimation or expected a posteriori), test length

requirement, and Q-matrix specification. To address these issues thoroughly,

examinee classification in the context of the DINA model merits a separate and

systematic study.

Appendix
An Expectation-Maximization Algorithm for the DINA Model

A1. Parameter Estimation

The probability of a correct response in Equation 2 can be reexpressed as

PjðαlÞ= gj if α0lqj < q0jqj

1− sj if α0lqj = q0jqj
,

�
ðA1Þ

where qj is the transposed jth row of the Q-matrix. That is, Zlj = 0 when α0l
qj < q0jqj and Zlj = 1 when α0lqj = q0jqj.

To obtain the maximum likelihood estimate of bjZ, where bj0 = gj and

bj1 = sj, maximize

lðXÞ= log
YI

i= 1

LðXiÞ=
XI

i= 1

log LðXiÞ ðA2Þ
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with respect to bjZ:

qlðXÞ
qbjZ

=
XI

i= 1

qLðXiÞ
qbjZ

=LðXiÞ

=
XI

i= 1

1

LðXiÞ
XL

l= 1

pðαlÞ
qLðXijαlÞ

qbjn

: ðA3Þ

Now,

qLðXi|αlÞ
qbjZ

=
Y
j0 6¼j

Pj0 ðαlÞXij0 ½1−Pj0 ðαlÞ�1−Xij0
qPjðαlÞXij ½1−PjðαlÞ�1−Xij

qbjZ
: ðA4Þ

The derivative in the right-hand side of Equaton A4 is equal to

½1−PjðαlÞ�1−Xij XijPjðαlÞXij−1 qPjðαlÞ
qbjZ

+PjðαlÞXij ð1−XijÞ½1−PjðαlÞ�1−Xij−1 −qPjðαlÞ
qbjZ

=PjðαlÞXij ½1−PjðαlÞ�1−Xij
qPjðαlÞ
qbjZ

Xij

PjðαlÞ
− 1−Xij

1−PjðαlÞ

� �

=PjðαlÞXij ½1−PjðαlÞ�1−Xij
qPjðαlÞ
qbjZ

Xij −PjðαlÞ
PjðαlÞð1−PjðαlÞÞ

� �
: ðA5Þ

Substituting Equation A5 to the derivative in the right-hand side of Equation

A4 will give us

qLðXi|αlÞ
qbjZ

=
YJ

j = 1

PjðαlÞXij ½1−PjðαlÞ�1−Xij

" #
qPjðαlÞ
qbjZ

Xij −PjðαlÞ
PjðαlÞ½1−PjðαlÞ�

� �

=LðXi|αlÞ
qPjðαlÞ
qbjZ

Xij −PjðαlÞ
PjðαlÞ½1−PjðαlÞ�

� �
: ðA6Þ

By substituting Equation A6 and interchanging the summations, Equation A3

can be written as

qlðXÞ
qbjZ

=
XL

l= i

qPjðαlÞ
qbjZ

1

PjðαlÞ½1−PjðαlÞ�

� �XI

i= 1

LðXijαlÞpðαlÞ
LðXiÞ

½Xij − pjðαlÞ�

=
XL

l= i

PjðαlÞ
qbjZ

1

PjðαlÞ½1−PjðαlÞ�

� �XI

i= 1

pðαljXiÞ½Xij −PjðαlÞ�
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¼
XL

l= i

∂PjðαlÞ
∂bjη

1

PjðαlÞ½1−PjðαlÞ�

� � XI

i= 1

pðαljXiÞXij −PjðαlÞ
XI

i= 1

PðαljXiÞ
" #

=
XL

l= i

∂PjðαlÞ
∂bjη

1

PjðαlÞ½1−PjðαlÞ�

� �
Rjl −PjðαlÞIl

� �
, ðA7Þ

where pðαl| Xi) is the posterior probability that examinee i has the attribute pat-

tern αl, Il = PI
i= 1 Pðαl|Xi) is the expected number of examinees with attribute

pattern αl, and Rjl = PI
i= 1 Pðαl|XiÞXij is the expected number of examinees

with attribute pattern αl answering item j correctly.

For item j, Equation A7 can be written as

qlðXÞ
qbjZ

=
X

fα
l
:α0

l
qj < q0

j
qjg

qPjðαlÞ
qbjZ

1

PjðαlÞ½1−PjðαlÞ�

� �
½Rjl −PjðαlÞIl�

+
X

fα
l
:α0

l
qj = q0

j
qjg

qPjðαlÞ
qbjZ

1

PjðαlÞ½1−PjðαlÞ�

� �
½Rjl −PjðαlÞIl�

= qgj

qbjZ

1

gj½1− gj�

� � X
fα

l
:α0

l
qj < q0

j
qjg

Rjl − gjIl

� �

+ qð1− sjÞ
qbjZ

1

ð1− sjÞsj

� � X
fα

l
:α0

l
qj = q0

j
qjg

Rjl − ð1− sjÞIl

� �
ðA8Þ

= qgj

qbjZ

1

gj½1− gj�

� �
R
ð0Þ
jl − gjI

ð0Þ
jl

h i

+ qð1− sjÞ
qbjZ

1

ð1− sjÞsj

� �
R
ð1Þ
jl − ð1− sjÞIð1Þjl

h i
, ðA9Þ

where I
ð0Þ
jl is the expected number of examinees lacking at least one of the

required attributes for item j and where R
ð0Þ
jl is the expected number of exami-

nees among I
ð0Þ
jl correctly answering item j. I

ð1Þ
jl and R

ð1Þ
jl have the same interpre-

tation except that they pertain to the examinees with all the required attributes

for item j. I
ð0Þ
jl + I

ð1Þ
jl is equal to Il for all j.

When Z= 0 (i.e., bj0 = g), qPjðαlÞ=qbjZ is 1 for the first term of Equation A8

and 0 for the second term. Thus, maximization of qlðX) with respect to bj0 sim-

plifies to solving for gj in the equation

1

gjð1− gjÞ

� �
R
ð0Þ
jl − gjI

ð0Þ
jl

h i
= 0, ðA10Þ

which gives the estimator ĝj =R
ð0Þ
jl =I

ð0Þ
jl . Similarly, maximization of qlðX) with

respect to bj1 is equivalent to solving for sj in the equation
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− 1

½1− sj�sj

� �
R
ð1Þ
jl − ½1− sj�Ið1Þjl

h i
= 0, ðA11Þ

which results in the estimator

ŝj = I
ð1Þ
jl −R

ð1Þ
jl

h i
=I
ð1Þ
jl :

Step 1 of the algorithm starts with initial values for g and s. In Step 2, I
ð0Þ
jl ,

R
ð0Þ
jl , I

ð1Þ
jl and R

ð1Þ
jl are computed based on the current values of g and s. Step 3

involves finding g and s by solving Equations A10 and A11. Finally, Steps 2

and 3 are repeated until convergence.

A2. Computing the Standard Errors

The information matrix of the estimator of b is IðβÞ=−E½q2lðXÞ=qβ2�. The

second derivative of the log-marginalized likelihood for item j with respect to

the parameters bjZ and bj0Z0 is given by

q2lðXÞ
qbjZqbj0Z0

=
X
i= 1

1

LðXiÞ
qL2ðXiÞ
qbjZqbj0Z0

− 1

L2ðXiÞ
qLðXiÞ
qbjZ

qLðXiÞ
qbj0Z0

" #

=−
XI

i= 1

1

L2ðXiÞ
qLðXiÞ
qbjZ

qLðXiÞ
qbj0Z0

" #
: ðA12Þ

because the first term vanishes when the expectation is taken. Taking the deriva-

tives of Equation A12 results in

−
XI

i= 1

1

L2ðXiÞ
XL

l= 1

pðαlÞLðXi|αlÞ
qPjðαlÞ
qbjZ

Xij −PjðαlÞ
PjðαlÞð1−PjðαlÞÞ

� �( )

×
XL

l= 1

pðαlÞLðXi|αlÞ
qPj0 ðαlÞ
qbj0Z0

Xij0 −Pj0 ðαlÞ
Pj0 ðαlÞð1−PjðαlÞÞ

� �( )
: ðA13Þ

Distributing L−1ðXi), each factor above becomes

XL

l= 1

pðαlÞLðXijαLÞ
LðXiÞ

qPjðαlÞ
qbjZ

Xij −PjðαlÞ
PjðαlÞð1−PjðαlÞÞ

� �

=
XL

l= 1

pðαl|XiÞ
qPjðαlÞ
qbjZ

Xij −PjðαlÞ
PjðαlÞð1−PjðαlÞÞ

� �

= pjðZ|XiÞ
qPjðZÞ
qbjZ

Xij −PjðZÞ
PjðZÞð1−PjðZÞÞ

� �
, ðA14Þ
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where pjðZ|XiÞ= P
fαl:Zlj =Zg pðαl|XiÞ and PjðZÞ=PðXj = 1|Zlj =ZÞ:

Therefore,

q2lðXÞ
qbjZqbj0Z0

= −
XI

i= 1

pjðZ|XiÞ
qPjðZÞ
qbjZ

Xij −PjðZÞ
PjðZÞð1−PjðZÞÞ

� �( )
×

pj0 ðZ0|XiÞ
qPj0 ðZ0Þ
qbj0Z0

Xij 0 −Pj0 ðZ0Þ
Pj0 ðZ0Þð1−PjðZ0ÞÞ

� �( )
, ðA15Þ

which is a sum of the products of expected values based on the examinees’ pos-

terior distributions. Instead of computing the expectation, the information matrix

can be approximated by evaluating Equation A15 at β̂ using the observed X
resulting in Iðβ̂). Finally, I −1ðβ̂) provides an approximation of Cov(β̂), and the

root of its diagonal elements represents the SE(β̂).
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