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The Ordered artition Model: An Extension
of the Partial Credit Model
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University of California, Berkeley

An item response model, called the ordered.par-
tition model, is designed for a measurement con-
text in which the categories of response to an item
cannot be completely ordered. For example, two
different solution strategies may lead to an equivalent
degree of success because both strategies may
result in the same score, but an examiner may
want to maintain the distinction between the

strategies. Thus, the data would not be nominal
nor completely ordered, so may not be suitable for
other polytomous item response models such as
the partial credit or the graded response models.
The ordered partition model is described as an
extension of the partial credit model, its relation-
ship to other models is discussed, and two examples
are presented. Index terms: ordered partition
model, partial credit model, partial order model,
polytomous IRT model, Rasclz model.

The ordered partition model (OPM) is designed
to represent empirical response formats that are
based on the idea of an ordered partition.
Mathematically, an ordered partition divides a set
into equivalence classes that then can be ordered,
but the order does not extend inside the equiva-
lence classes (Kemeny, Snell, & Thompson, 1957).
Suppose that, according to some substantive the-
ory, students’ responses can be classified into a
series of successive levels and that a number of
different manifestations lead to classification
into a particular level. This type of ordered par-
tition scoring arises in theories of learning, cog-
nition, and development in which (1) there is an
a priori concept of progress between levels as rep-
resented by the items, and (2) different types of

responses may be scored within a given level. In
this conception, the relationship between the al-
ternatives within a particular level is not compen-
satory. If one alternative is observed, it is the

equivalent of observing any other within that lev-
el, and observing more than one within the same
level is either not modeled or not possible.

Theoretical structures of this kind have been
common in psychology and education for many
years-in developmental and especially Piagetian
studies (e.g., Flavell, 1971; Piaget, 1950; Werner,
1957), in learning hierarchies (e.g., Gagne, 1968),
and in other educational domains (e.g., Van
Hiele, 1986). However, the measurement tech-
niques applied to data collected in the investiga-
tions of these kinds of theoretical structures have
been much less sophisticated than those applied
to simpler dichotomous data situations (Fischer,
Pipp, & Bullock, 1984; Wilson, 1990). This has
led to criticism-measurement has been accused
of retarding the development of theory and ap-
plications (Glaser, Lesgold, & Lajoie, 1987). More
recently, with the rise of the &dquo;authentic&dquo; or &dquo;per-
formance&dquo; assessment movement in education

(Wiggins, 1989), ordered partition scoring
schemes are becoming commonplace (e.g.,
Assessment of Performance Unit, 1980; Baron,
Forgione, Rindone, Kruglanski, & Davey, 1989;
Baxter, Shavelson, Goldman, & Pine, 1991;
California Assessment Project, 1989).

The OPM is proposed as a step toward the
development of flexible measurement techniques
to guide the application of good measurement
practices to help theoretical progress in psycho-
logy and education. Although it does not encom-
pass all possible complications that can arise

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



310

in these situations, the OPM does deal with one
complication that is presently not handled by
familiar models.

Extending the Partial Credit Model

Consider a situation in which there are Iitems

. (i = 1, ..., I). Each item has M; response
categories (k = 1, ... , M;) that are graded into
M; possible score levels (rn = 0, ..., Mi - 1). The
categories are related to the levels by a function
B; (k) that is given by B (k) = k - 1.

For data possessing this structure, Masters

(1982, 1988) provided a derivation of the partial
credit model (PCM) from certain assumptions.
Here, the pattern of that derivation is extended
to the ordered partition case. Masters showed that
the PCM can be derived if it is assumed that the

probability of person n, with parameter 0,,
responding in the first level of a pair of con-
secutive levels is governed by a simple logistic
model,

where Pnim is the probability of person n respond-
ing in level m to item i, and &eth;im is a parameter
associated with the transition between levels m - 1
and me Equation 1 can be rewritten (Andersen,
1973, 1983) as:

where 11i111 is a parameter associated with each
level, 11iO = 0, and the relationship between
Masters’ 8 parameter and Andersen’s il

parameter is given by 8ùrI = 11ùrI - 11i(111-I)’ Masters
derived the PCM from this assumption, and the
resulting formulation for score levels is:

masters (1982) originally defined Pnim as

for m > 1, and

Wilson & Masters (in press) have shown that, for
the PCM, Equation 2 can be generalized to:

They used this relationship for response levels in
which no person responds. In this context, it will
be used to expand the applicability of the PCM.
Note that the relationship holds even when
m=h.

An llllustrative Example .

Consider a more complex situation in which
there is not a one-to-one relationship between
response categories and score levels, which

represents the idea behind the OPM. Suppose
there are four categories (k = 1, ... , 4) in which
a person can respond to item i. On an a priori
basis these categories have been scored into three
levels, ranging from m = 0 to m = 2. Let the
function B; define this scoring scheme, and
define B; by the mapping: By (1) = 0, B,(2) =
By (3) = 1, and B,(4) = 2.
Now make the following assumption, which

is similar to Masters (1982). Suppose that a rela-
tionship analogous to Equation 2 holds between
the probabilities of responding in consecutive
categories, 1tn¡k; the parameters associated with

persons, 6~; and the parameters associated with
categories, ~;k (where ~ is used rather than 11 to
emphasize that these parameters are not neces-
sarily the same as those used in Equation
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2, and 1t is used rather than p for a similar
reason):

where ~¡1 = 0, and K; is the number of response
categories for item i.

For the particular situation under considera-
tion, Equation 7 becomes:

Equations 8 and 10 are formally equivalent to
Equation 2, with appropriate substitutions.

Equation 9 is different in form-the categories
have the same score; therefore, the multiplicative
factor associated with 0~ is 0, and 0 drops out
of the equation. In substantive terms, this is what
it means to give the same score to two responses.
By ascribing the two responses an equal score,
it is implicitly assumed that the choice between
the two responses is not sensitive to differences
in 0. Hence, the relative probability of one or
the other response will be a constant for all Os.
If this assumption could not be met in the sub-
stantive situation, then the OPM would not be
appropriate.
Now use Equations 8, 9, and 10 in combina-

tion with the normalizing relationship,
1tnil + 1tni2 + 1tni3 + 1tni4 = 11 to deduce the
form of the probabilistic model that is a conse-
quence of Equation 7 (Masters, 1988). Elemen-
tary algebra provides .

where W is the sum of the numerators. Note that
Equations 11, 12, 13, and 14 conform to the form:

which is a generalization of Equation 3, sub-
stituting B,(k) for m.

Note that the connection must be made back
from the category representation to the score
representation, as in Equation 3. First, the func-
tion B; implies the following relationships:

and

Comparing Equations 11, 12, 13, and 14 with
Equation 3, it can be seen that Equation 16 re-
quires that the denominators in Equations 3 and
15 must be the same in this instance. Hence,
Equation 18 will hold if

and Equation 17 will hold if llil is selected, such
that exp( -llil) = exp(-4.) + exp(-4i,). Rearrang-
ing this relationship gives

Thus, if the OPM parameters (ç¡Z’ Ç¡3’ Ç¡4) describe
a model for the categories under the scoring
scheme defined by B,, then the PCM parameters
(1l¡1, ~,2)~ as defined by Equations 19 and 20, will
describe a PCM model consistent with the OPM
model (Equations 16, 17, and 18).
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The Ordered Partition Model

Formal Definition of the Model

Consider a situation in which there are I items

(i = l, ..., 1). Each item has Ki response

categories (k = 1, ... , K;), which are graded into
Min + 1 possible score levels (m = 0, ... , M;).
For item i, response k is assigned on an a priori
basis to level m by the function B;(k), which is
the scoring scheme for that item. That is

~; (k) = m.
Note that Bi is a known function for each

item, but Bi need not have the same definition
for all items. Each response must map onto only
one level (but several responses may map onto the
same level); and to avoid redundancy, each level
must be represented by at least one alternative
from some item in the test.

Let X&dquo;; be a random variable that represents
the response of person n to item i. Under the

OPM, person n, with ability 0,,, has the probabil-
ity of selecting the response with index k

where ~i, is the parameter associated with re-

sponse k on item i, and,’ i, --_ 0. Usually, the sum
of the item parameters is constrained to 0, but
other constraints may be used. The example
above did not have multiple categories in the first
and last levels. This should not be considered a
limitation of the model; Equation 21 can be ap-
plied to situations in which there are multiple
categories at any of the defined levels.

For the score levels rra = 1, 2, ..., Mi, the
parameters 6,~ can be defined that are equivalent
to Master’s (1982) partial credit &dquo;step&dquo;
parameters as a direct function of the OPM

parameters:

where t in the numerator and denominator is a

dummy variable indexing the categories in levels
m - 1 and m, respectively (Kelderman, 1989).
Equation 22 is a generalization of Equation 20.
Note that this expression applies when there are
multiple categories in the extreme categories and
when there are multiple categories in nonextreme
categories.

Iaelationship to Other Models

The nominal model. To clarify the relation-
ship of the OPM to other item response models,
it is convenient to start with the taxonomy sug-
gested by Thissen & Steinberg (1986). They dis-
cussed several extensions of the PCM, each of
which &dquo;fills in the parameter space&dquo; (p. 572) be-
tween the PCM and Bock’s nominal model

(Bock, 1972). The OPM can be construed as being
between the nominal model and the PCM. The

response model in Equation 21 for the OPM and
the nominal model are of the same form. The
difference is that the weights represented by the
scoring function Bi are fixed a priori in the OPM,
but the equivalent function is estimated in the
nominal model. Understanding the reason for
this difference is crucial to understanding the use-
fulness of the OPM. The same set of data could
be analyzed with both the nominal model and
the OPM, but the OPM assumes that there
is extra information that the nominal model does
not need-substantive knowledge about the
structure of the item responses in the shape of
the scoring scheme represented by the ~;. If that
knowledge is not available, then it would be

misleading to &dquo;make up&dquo; 9 the function ~i,
therefore, the nominal model would provide
a good starting point. If that knowledge is

available, it can be ignored at some risk, and
the OPM would be an obvious starting point
under such circumstances. Thus, the OPM in-
corporates a priori substantive knowledge about
scoring schemes into the calibration of the items;
the nominal model leaves that to empirical
estimation.

Samejima’s graded response model. Another
model that has been used in this context is the

Samejima graded response model (SGRM;
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Samejima, 1969). Unfortunately, no generaliza-
tion from the SGRM to the OPM exists; therefore,
the SGRM is generalized differently. (The follow-
ing method of introducing an ordered partition
into the SGRM was suggested by an anonymous
reviewer.)

Let mk denote the score level of category k for
item i. The SGRM is based on probabilities of
scoring at or above a given level. The probability
of selecting any response at or above level rrak is
given by

The probability of any response at level mk is

given by

For each score level at which there are one or
more response categories, the conditional prob-
abilities for those categories within their respec-
tive levels can be defined as 1timk’ These condi-
tional probabilities sum to 1 within a level and
do not depend on 0. The conditional probability
of responding within category k is 1tilTlkPÚnk(8).
This is not as elegant as the OPM formulation,
nor is it an instance of a general form.

Interpreting the Parameters

The OPM parameters, ~, can be used to inter-
pret the results. For any given person (i.e.9 for
constant 0), the odds for item i of that person
being in category k, as opposed to being in k’,
are proportional to

Equation 25 is the same between and within score
levels. As an extension to the PCM, the interpre-
tive techniques developed by Wright & Masters

(1982) also are available. In particular, the odds
(for constant 0) of being in a higher category, m,
as opposed to being in a lower category m - 1 are
proportional to:

where

can be interpreted as proportional to the odds of
being in category k (in level m), rather than level
m-1.

Estimation

Equation 21 shows that the OPM can be con-
sidered a special case of Kelderman’s (1989)
polytomous loglinear item response model. For-
mulating the OPM in this manner has advantages:
(1) the computer program LOGIMO (Kelderman
& Steen, 1988) can be used to estimate param-
eters, and (2) the extension to a multidimensional
framework can be made in the same way as out-

lined by Kelderman (1989). Parameters are

estimated by modified iterative proportional fit-
ting. The algorithm is a relatively straightforward
modification of the algorithm used for the
dichotomous loglinear Rasch model (Kelderman,
1984).

The OPM model also may be estimated by
other means. Wilson & Adams (in press) de-
scribed a marginal maximum likelihood algo-
rithm that may be used to estimate the OPM

parameters and provided a monte carlo study to
investigate the behavior of the algorithm under
differing numbers of quadrature points. Condi-
tional maximum likelihood estimation is also

theoretically possible. Adams & Wilson (1992)
proposed an algorithm for a somewhat more
general class of models, and a computer program
is available to implement the procedure.

Example Applications

Application to the SOLO Taxonomy

Tests and data. The OPM was applied to
measuring learning outcomes based on the neo-
Piagetian theory of learning called SOLO (Struc-
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ture of the Learning Outcome; Biggs & Collis,
1982). SOLO levels are defined in Table 1. It is ex-
pected that, for a given topic, learners will move
through each level-from the prestructural to the
extended abstract-as their comprehension and
maturity improve. Furthermore, the majority of
responses should be classifiable into one of the
levels in the SOLO taxonomy indicating the
learner’s location on a latent dimension.

Table 1
SOLO Levels

SOLO may be used to construct item clusters
that consist of some stimulus material followed

by items that are keyed to successive levels in the
SOLO structure (Collis & Davey, 1986). The
simplest of these consists of one item at each
level, but more accurate measurement can be at-
tained by having several items at each level

(Wilson, 1989). However, this results in a compli-
cated decision rule for determining which level
is indicated by any particular response vector.
These decision rules can be represented by
ordered partitions of the response vectors. The
OPM allows for these different decision rules and

compares their suitability.
This method of test construction is a special

case of the superitem strategy described by
Cureton (1965)-such subsets of items also are
known as &dquo;item clusters,&dquo; &dquo;item bundles,&dquo; or
&dquo;testlets.&dquo; In the superitem strategy, a subset of

items is linked by common stimulus material or
other substantive feature, and the superitem is
scored by the sum of the item scores. An exam-
ple is shown in Table 2. The test illustrated in the
top half of Table 2 is composed of two sub-
tests-Subtest 1 had three dichotomous items,
and Subtest 2 had two dichotomous items. The
levels are scores on the subtests, and the response
vectors are the different ways of achieving each
of those scores, that is, the superitem response
patterns. It is assumed that the two subtests start
from an equal difficulty level, so that succeed-
ing on two items is equally indicative of ability
for either subtest. A somewhat less familiar sit-
uation also is illustrated in the second example
in Table 2 in which there are a priori grounds to
suppose that the three-item subtest includes an
item from a lower level, so that persons of equal
ability would be expected to score one point
higher on the three-item subtest (Subtest 1) than
on the two-item subtest (Subtest 2). In this case,
the levels and the scores differ. In general, the
terms &dquo;score&dquo; and &dquo;level&dquo; are synonymous, but
the second example indicates that in some cir-
cumstances it is worthwhile distinguishing them.

The SOLO taxonomy was used to generate
superitems (Romberg, Collis, Donovan,
Buchanan, & Romberg, 1982; Romberg, Jurdak,
Collis, & Buchanan, 1982) in the domain of
mathematics. An example of one of the super-
items is given in Figure 1. In discussing the
results, individual items within a superitem will
be referred to as &dquo;questions.&dquo; Each successive
question was linked to the unistructural, multi-
structural, or relational level, respectively. The
responses were judged as acceptable or un-

acceptable according to an agreed set of criteria.
The seven items examined were part of a larger
study of the usefulness of the SOLO superitem
format for assessment of mathematics ability
(Romberg, Collis, Donovan, Buchanan, &

Romberg, 1982; Romberg, Jurdak, Collis, &
Buchanan, 1982). The data were gathered from
257 students from grades four, six, and eight in
a central Wisconsin school district. Because of
the age of the students, only the first four levels
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’1’able 2
Two Examples of Scoring for Tests With Two Subtests Each

(i.e., excluding extended abstract) were assessed.
Because of the hierarchical nature of the tax-

onomy, it was expected that the majority of the
responses would be in the form of &dquo;Guttman

true-types&dquo; (Guttman, 1941). That is, for most
learners, success on one level of the taxonomy
would be preceded by success on all lower levels.
Clearly, when the response to a superitem con-
forms to one of these patterns, it can easily be
assigned to one of the soLo levels. Superitems
that conform to the Guttman type could be
scored by their usual score (i.e., simply the sum
of the dichotomous items), and non-Guttman
response patterns could be assigned to another
dimension, in accordance with a Guttman scor-
ing scheme. In contrast, the superitems could be
scored in the traditional way, which will be called
the standard scoring scheme. Students also could
be mapped to the level of the highest question
on which they succeed; this was called the max-
imal scoring scheme. A variant of the Guttman
scheme would be to ignore success on any ques-
tions that are at levels above a failed question;
this was called the minimal scoring scheme. These
scoring schemes are given in Table 3.

Model fit. Each scoring scheme can be com-
pared by examining the fit of the data to the OPM
represented by the scheme. Because the models
are not nested, Akaike’s (1973) information
criterion (AIC) was used for comparison:

where p is the number of estimated parameters,
C is an arbitrary constant, and G2 is the likeli-
hood ratio statistic:

where ht is the observed frequency of persons
with response pattern x and scorc t, mxt is the
modeled frequency, and the summation is taken
over all logically nonzero cells. The comparison
between models is achieved by calculating the dif-
ference between their respective AICS. All of these
models, and those discussed below, are based on
sparse contingency tables; therefore, the fit com-
parisons cannot be interpreted as firm indicators
of model fit.

The fit of the standard scoring scheme was
compared with the maximal and minimal
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Figure 1
A Sample SOLO Superitem (Superitem 5)

(From Romberg et al., 1982; Reproduced by permission.)
Here are two pictures of a box. One has every face shown while the other shows

a view only of those faces that could be seen if the box was solid. For the

solid box, you can see 3 faces.

The drawing is of a light shining on a square-based box placed on a table.

Three faces of the box are in the direct light. One of the three faces not in

the direct light has been shaded.

A. What is the total number of faces that a square-based box has?

B. The picture at the side is a box with

triangular ends. How many faces does

it have altogether?

C. The picture at the side shows a light shining on

a box with pentagonal (or five-sided) ends. Some

faces are in the light. If the other boxes referred

to in the table below were laid in the same position

as the box in the picture, fill in the table with

the number of faces that would be in the direct

light and tha total number of faces the box has.

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



317

Table 3

Assignment of Responses to Levels for Each of the
Scoring Schemes in the SOLO Example

* Scores could not be assigned to these response patterns.

schemes. The results of the estimations of these
models are provided in Table 4. Clearly, the
minimal and maximal scoring models fit almost
equally well, but were somewhat less well-fitting
than the standard scoring scheme.

Table 4
Goodness-of-Fit Statistics for the

Scoring Schemes in Example 1

As should be clear from Table 3, because
several of the response categories have no scores,
the Guttman scoring scheme is not appropriate
for the ordered partition framework. To assign
these responses a score that does not conflict with
the Guttman scheme is equivalent to applying the
scores to another latent dimension. This can be

accomplished by going outside the ordered parti-
tion framework, but staying within the framework
of Kelderman’s (1989) multidimensional model for
polytomously scored items. This can be done by
introducing the possibility of incorporating s

dimensions into the basic loglinear Rasch model:

where 81lq is the qth latent variable, and B¡q is the
corresponding scoring function. This more com-
plex model also can be estimated by LOGIMO
(Kelderman & Steen, 1988).

In this example, the non-Guttman responses
were assigned to a second dimension with the
same scores as in the standard scheme, and Equa-
tion 30 was used as the basis for estimation using
LoGimo. The fit of the modified Guttman model
also is given in Table 4, which shows that the stan-
dard scheme provided the best fit for the four
models.

Parameter estimates. For the standard scoring
model, the relationship of the OPM to the PCM
can be illustrated, and the OPM parameter
estimates can be interpreted according to Equa-
tions 25, 26, and 27.

The partial credit &dquo;step&dquo; parameters were
calculated (using the OPM estimates substituted
into Equation 22) for Superitem 2 as -1.360,
1.079, and 1.432 for the steps from Level 0 to 1,
1 to 2, and 2 to 3, respectively. Direct estimation
of the PCM parameters using LOGIMO provided
almost identical values of -1.360, 1.079, and 1.433,
respectively. Thus, using the interpretation com-
mon to partial credit analyses, the first step can
be interpreted as relatively &dquo;easy&dquo; (the odds of
being in Level 1 compared to Level 0 are 3.90 to
1), and the next steps are relatively more difficult
(the odds of being in the higher category of each
pair are .34 to 1, and .24 to 1, respectively).

The odds of being in a higher category (as
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opposed to being at the level below) were

calculated and are shown in the Figure 2a. For
the response (111), the odds were .24 to 1

(calculated above), because there was only one
response category in Level 3. For Level 2, the odds
of being in category (110), (101), or (011) com-
pared to Level 1 were .28 to 1, .04 to 1, and .01
to 1, respectively. Thus, it is probable that a
student in Level 2 will be in the first category
(110), which is the Guttman response. For Level
1, the odds of being in category (100), (010), or
(001), compared to Level 0 (000) were 3.60, .24,
and .06, respectively. Once again, the Guttman
response was the most likely. Some odds were not
calculated because they did not correspond to
interpretable changes in response patterns. The
most likely sequence of response patterns, start-
ing from (000), was the Guttman sequence. For
each case in which a Guttman response was

merely one of the possibilities, a Guttman option
was always more likely than a non-Guttman re-
sponse. Thus, for Superitem 2, the pattern of
responses conformed to the SOLO expectations;
that is, the Guttman responses were predominant
in a probabilistic sense.

These results can be compared to Superitem
5, which had a pattern of results quite different
than expected. The ordered partition analysis
gave equivalent PCM steps of -.214, 1.217, and
5.679 (which also were indistinguishable from the
directly estimated PCM estimates to two decimal
places) for the first, second, and third steps,
respectively. These results indicate that the first
step for Superitem 5 was somewhat more difficult
than the first step for Superitem 2, but that the
third step was considerably more difficult than
that for Superitem 2. This is not inconsistent with
expectations-the PCM estimates give no indica-
tion of a problem with the superitem.

The OPM results for Superitem 5 (Figure 2b)
are quite different from those for Superitem 2,
and are inconsistent with expectations. First,
several categories were not observed at all, so
their respective odds are not shown. Second, and
more importantly, the odds of the Guttman

option (100) were less than that of the non-

Figure 2
Odds of Being in. a Higher Response Category

Compared to the Category Below

Guttman option (010; see Figure 1).
The inconsistency of this item with expecta-

tion has already been noted elsewhere (Wilson &
Iventosch, 1988, p. 327) in which a dichotomous
Rasch analysis was compared to a partial credit
analysis to locate the discrepancy. These results
indicated that the multistructural question is

empirically much easier than the unistructural
question. The text of the item suggests that the
illustration most near to the unistructural ques-
tion is misleading-it might be taken to imply
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that the question is to be answered in the way that
the relational question is meant to be answered.
This is not the case for the multistructural ques-
tion. Additionally, the classification of these two
questions can be questioned. They appear to be
similar, although most students would be ex-
pected to be more familiar with a &dquo;square box&dquo;
than a &dquo;triangular box.&dquo; Thus, the ordered

partition results for this item suggest that the
presentation of the stimulus material needed to
be revised and that a problem might exist with
the question design.

Application to Problem-Solving Strategies

Strategies and data. Siegler (1987) reported
a study in which students were presented a series
of elementary addition problems and then were
asked &dquo;How did you figure out the answer to that
problem?&dquo; The answers were classified into one
of the following five categories according to a
scheme based on earlier research:
1. Retrieval (R), in which the student retrieves

the answer from memory;
2. The Min strategy (M), in which the student

counts up from the larger addend the

number of times indicated by the smaller
addend;

3. Decomposition (D), in which the student
transforms the original problem into two or
more simpler problems;

4. The Counting-All strategy (C), in which the
student counts from one the number of times
indicated by the sum; and

5. Guessing and &dquo;other&dquo; (G), in which the stu-
dent says that she/he guessed or did not
know the answer.

Siegler (1987) concluded (1) that dependent
variables such as solution time and error rate
should not be &dquo;averaged over&dquo; these strategies as
done in the past, because it has led to some con-

tradictory results in studies of addition; and (2)
that students do not use one strategy exclusively,
but tend to show substantial variation. His anal-

yses show that some strategies are better than
others in the sense that they are quicker and/or
are associated with a lower error rate. There is

also considerable evidence in the literature for a

developmental sequence among the strategies. For
example, using a chronometric approach, Ashcraft
(1982) found that although first graders are fairly
consistent in their use of the Min strategy (M),
fourth graders consistently use Retrieval (R), and
third graders use a mixture of the two.
Many questions remain about the development

of strategy use. These questions may best be
answered by considering the strategies one at a
time. However, whether the strategies compose
a strategy-use continuum remains an interesting
question, which could assist in not only the
development of strategies but also in finding any
regularities in their distribution within and be-
tween individuals. For example, it could be

hypothesized that any strategy is better than

Guessing (G)-this is illustrated as Scoring
Scheme A in Figure 3a. A scoring scheme cor-
responding to this would be dichotomous, with
a score of 0 awarded for G and a score of 1 given
for the remainder. On the basis of the develop-
mental literature referred to in Siegler (1987),
there is a strong tendency for Count-All (C) to
develop first. Therefore, Scheme A might be
modified to Scheme B, in which the score for G
and C remain the same, but the three remaining
strategies receive a score of 2. A further modifica-
tion is suggested by noting that R is usually con-
sidered the superior strategy (at least in the class
of items used by Siegler), so Scheme B might be
modified to Scheme C (Figure 3c) in which R
alone receives the highest score. As is often the
case, the appropriate scoring scheme is not

known a priori. The context usually provides
some indication of the most probable alter-

natives, as in this case, but will seldom provide
a definitive resolution. Then, other things being
equal, the OPM that provides the better overall
fit among these alternatives will have the greater
empirical support.

There were 68 students with complete data
records, from kindergarten, grade 1, and grade
2. The items ranged from easy (e.g., 4 + 1 = ?)
to more difficult (e.g., 17 + 6 = ?). For illus-
trative purposes, the following subset of the
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Figure 3
Scoring Schemes for Siegler’s Addition Strategies

original item set is discussed below: (1) 12 + 2,
(2) 14 + 1, (3) 3 + 14, (4) 1 + 14, (5) 17 + 4,
and (6) 16 + 6. These were combined into three
pairs. The first pair was taken from Siegler’s
(1987) Problem Type 1 in which the larger addend
is first, and the smaller addend is relatively small
(i.e., from 1 to 3). The second pair was taken from
Siegler’s Problem Type 2 that is the same as Prob-
lem Type 1 except that the larger addend is
second. The third pair was taken from Siegler’s
Problem Type 4 in which the larger addend is
first, and the smaller addend is relatively larger
(from 4 to 6), which means that the sum is also
relatively larger. The three scoring schemes
discussed above are provided in Table 5.

Results. Table 6 gives the AIC for each scor-
ing scheme. Note that for these three scoring

Table 5

Assignment of Responses to
Levels for Each of the Scoring

Schemes in Example 2

schemes, the number of item parameters is a con-
stant, but the total number of parameters to be
estimated varies because the total number of
scores with nonzero frequencies varies from
scheme to scheme. Following the argument
presented above, it could be expected that if the
use of strategies is a developmentally-ordered
variable as described above, then the fit should
improve moving from Scheme A to Scheme C,
and this is indeed the case.

Table 6
Goodness-of-Fit Statistics for the

Scoring Schemes in Example 2

If Scheme C is accepted as appropriate, the
item parameter estimates for the corresponding
OPM can be examined and interpreted. The
modeled probabilities for Item 1 (12 + 2) are
shown in Figure 4a (the solid lines in these figures
represent the curves for each category, and the
dashed curve represents the sum of the two

categories that receive a score of 2). The G, C,
M + D, and R curves provide the simpler PCM
equivalent of the OPM estimates.

The modeled probabilities for Item 2 (14 + 1)
are shown in Figure 4b, and those for the remain-
ing four items are shown in Figures 4c-4f. If the
0 scale is interpreted as representing the develop-
ment of strategy use, note that the centers of the
curves move to the right from Problem Type 1
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Figure 4
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to Problem Type 4. Note also that, of the two
strategies comprising the third strategy level, D
is at all times less likely than the M strategy. (This
is necessarily a feature of the way that the model
has been constructed, given that fewer students
overall exhibit D. Deviations from this would be
observed as item misfit.) For items in Problem
Type 1 (Items 1 and 2, Figures 4a and 4b), G is
superseded by the next strategy at an earlier point
than for Problem Types 2 and 3, which is true
for Item 2 sooner than for Item 1. But there is
also another difference between the Problem Type
1 (Figures 4a and 4b) items and the items for
Problem Types 2 and 3 (Figures 4c-4f). For the
first pair of items, the major successor to G is
the C strategy; however, for the remaining items
the C strategy is not the most likely-the next
most likely strategy is the M strategy.

These qualitative differences arise even though
two of the items differed only in their order of
presentation of the addends (Items 2 and 4).
Comparing the Problem Type 2 items (Figures 4c
and 4d) with the Problem Type 4 items (Figures
4e and 4f), the major difference is that, although
the point at which M and D succeed G is approx-
imately the same, the point at which R becomes
most likely is much later for the items in Problem
Type 4; in other words, M and D persist as strat-
egies later for Problem Type 4 than for Problem
Type 2.

These differences can be summarized as

follows. In the context of the three problem types,
the C strategy will not be prominent developmen-
tally if either (1) the first addend is larger than
the second, or (2) the smaller addend is larger
than 1-3. Also, when the smaller of the two ad-
dends is in the range 4-6 rather than 1-3 (or,
equivalently, when the sum is in the range 19-23
rather than 13-17), R is developmentally more
&dquo;difficult: ’
Two problems per problem type were chosen

for this illustrative example because (1) LOGIMO
would not estimate all the parameters for a

sampling rate of three per problem type (i.e., nine
items with four free parameters per item, resulting
in 36 item parameters, to which must be added

the number of person parameter estimates), and
(2) the sample size was clearly too small for this
number of parameter estimations. To determine
whether the above interpretations generalized
beyond these items, parallel analyses were done
with 10 other sets of six items drawn randomly
from the 27 items comprising the three problem
types. The results were essentially the same.

Table 7 provides, for Item 1, the predicted
probabilities of being in each of the strategy
classes at four developmental points-the mini-
mum observed 0, the average of the kindergarten
students, the average of the grade 1 and 2

students, and the maximum observed 0. These
proportions clearly display the development of
strategy use and, at the same time, depict the
diversity of strategy choice at any given location.
The pattern shows some interesting symmetries.
In comparing the rows for the two most extreme
Os (-2.36 and 2.62), the D and M probabilities
are almost exactly the same; however, the proba-
bilities for R and those for G and C combined

virtually interchange in value, with the majority
of the latter going to C. This also can be observed
by comparing the category response functions in
Figure 4a. The same pattern holds for the two
more moderate Os, but with correspondingly
larger proportions for D and M and smaller pro-
portions for the rest.

Table 7
Predicted Probabilities of Being in Each of the
Strategy Classes for Item 1 at Four Values of 0

These qualitative features echo certain findings
that Siegler (1987, p. 255) emphasized: Students,
even at the extremes, are not predicted to use just
one strategy exclusively. The ordered partition
analysis revealed that patterns of results are sen-
sitive to differences in item types. The finding
that some types develop later than others is
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predictable and consistent with Siegler’s account.
The finding that C is never a predominant strat-
egy for two of the problem types is not evident
in Siegler’s analysis, because Siegler averaged
across problem types. The ordered partition anal-
ysis, however, indicated that there are some dis-
tinctive patterns in the data that were not clear
in the original analysis.

Discussion

The OPM offers a useful way to conceptual-
ize and implement measurement of (1) achieve-
ment domains in which there is some underlying
structure built into the items (such as SOLo), (2)
data arising from cognitive science investigations
involving strategy use, and (3) other educational
and social science applications in which ordered
partitions of the response categories are suggested
by substantive theory (such as might arise in per-
formance assessment). Because the OPM fits into
the partial credit framework, it allows a straight-
forward means of integrating a more complicated
view of data that arise in measurement contexts
with a now well-established item response model
for ordered polytomous data.

This analysis has capitalized on the framework
allowed by Kelderman’s (1984, 1989) loglinear
Rasch model. Some of the power of that ap-
proach is evident in the relative ease with which
alternative scoring schemes could be fitted in the
two examples. The loglinear Rasch framework
allows for the routine practical application of
measurement models that would under other cir-
cumstances demand the creation of an entirely
new computer program. However, there are some
limitations to the number of item parameters that
can be estimated with LOGIMO. Therefore,
Wilson & Adams (in press) developed a special
purpose program for the OPM that decreases the
restrictions on the number of parameters, pro-
vides more user-friendly output, and more effi-
cient estimation. This program also incorporates
special cases of the OPM that are not attainable
with the LOGIMO model, such as the imposition
of constraints on category parameters between
items [similar to the rating scale constraints

(Andrich, 1978) that can be placed on the PC~t].
The first example could be viewed as a way to

use the ordered partition approach to model the
role of individual items in measurement situa-
tions in which there is expected to be some local
dependence among subsets of items, such as the
SOLO case in which the items share a common

stimulus; therefore, it could be viewed as an im-
provement on the earlier work by Wilson (1988)
in which the results of two analyses, one that used
a dichotomous Rasch model and a second that
used a PCM, were combined to explore the pat-
tern of local dependency. The ordered partition
approach streamlines this by modeling both the
subtest response vector and subtest score levels
of information in one analysis. This is not quite
an integration of the dichotomous item and sub-
test score level as was attempted by Wilson (1988),
but it nevertheless allows for an interpretation
that is centered on the item level.

The OPM can be contrasted with a purely
latent class analysis for which each response
category would be considered separately, but in
which no latent trait is postulated. Recently, there
have been a number of other approaches de-
scribed that consider ordered latent classes as a

possible way to analyze such data (Dayton &
Macready, 1989; Goodman, 1990; Haertel &

Hativa, 1986; Yamamoto, 1988). Conceptually,
the ideas of ordered latent classes, which intro-
duce a latent order into nominal classes, and the
OPM, which introduces latent classes into a

latent trait model, can be seen as approaching a
common goal. A valuable next step will be to
compare these models with the OPM, to explore
the relative merits of the two approaches, and
possibly to attempt a unification of the differ-
ent perspectives.
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