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Douglas, Roussos, and Stout introduced the concept of differential bundle functioning (DBF)

for identifying the underlying causes of differential item functioning (DIF). In this study,

reference group was simulated to have higher mean ability than the focal group on a nuisance

dimension, resulting in DIF for each of the multidimensional items that, when examined

together, produced DBF. The empirical power and the Type I error of the Simultaneous Item

Bias Test for DBF analysis were examined under various sample sizes, ratios of reference to

focal group sizes, correlations between target and nuisance dimensions, magnitudes of DIF/

DBF, test lengths, percentages of test items in the bundle, and item discriminations. Power

was generally high in cells with larger DIF magnitudes, higher percentages of items in the

bundle, larger sample sizes, and with the nuisance dimension having a higher discrimination

than the target dimension. Type I error rates approximated the nominal alpha rate for all

conditions.

Keywords: differential item functioning; multidimensionality; differential bundle

functioning

The empirical evidence gathered in the investigation of bias is generally referred to as

differential item functioning (DIF). In response to public concern on the bias that

exists in some measures of aptitude and/or cognitive ability (e.g., Scholastic Aptitude Test

(SAT), intelligence tests, and exams for licensure and promotion), conducting DIF ana-

lyses is now standard practice for most large-scale testing companies. The development of

statistical and substantive methods of investigating DIF is crucial to the goal of designing

fair and valid educational and psychological tests.

Shealy-Stout’s Multidimensional Model for DIF (MMD)

During the last decade or note so, researchers have argued that the leading cause of

DIF is the inclusion of multidimensional test items. That is, many tests thought to be

unidimensional—an important assumption in item response theory (IRT)—are in fact
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measuring additional latent traits other than the trait of interest (e.g., Oshima & Miller,

1992; Roussos & Stout, 1996a; Russell, 2005; Shealy & Stout, 1993a). These other dimen-

sions represent either intentionally or unintentionally measured traits. According to Shealy

and Stout’s (1993a) multidimensional model for DIF (MMD), if an additional dimension

is unintentionally assessed as part of the construct of interest (e.g., verbal ability necessary

for an item designed to measure math ability), then it is termed nuisance, but if the test is

designed to measure two traits (e.g., math ability and logical reasoning), then the second

dimension may be considered auxiliary. Under MMD, DIF that results from auxiliary

dimensions is benign (indicating impact), whereas nuisance traits produce adverse DIF

(indication of bias). It is also important to note the difference between impact and bias.

Impact is a reflection of true ability differences between groups on a relevant or inten-

tional construct; bias is a term reserved for items that measure an unintended trait for

which examinees from one group are systematically advantaged or disadvantaged.

Violations of Unidimensionality Assumption

Many experts agree that most achievement and aptitude tests are actually multidi-

mensional, with perhaps a dominant target dimension and other minor dimensions

(e.g., Ackerman, 1992; Camilli & Shepard, 1994; Embretson & Reise, 2000; Lord, 1980;

Shealy & Stout, 1993a). Hence, the use of unidimensional IRT models with multidimen-

sional test data violates the unidimensionality assumption and poses a potentially serious

threat to item and examinee parameter estimation.

Many studies (e.g., Ansley & Forsyth, 1985; Kirisci, Hsu, & Yu, 2001; Reckase,

1979; Reckase, Ackerman, & Carlson, 1988) have assessed the effects of this violation

on measurement equivalence, and the results have been used to both support the contin-

ued use of unidimensional IRT and encourage the development of multidimensional

IRT (MIRT) models as well. Kirisci et al. (2001) examined the effects of multidimen-

sionality and IRT calibration programs (i.e., XCALIBRE, BILOG, and MULTILOG) on

the accuracy of item and ability parameter estimates. They observed an interaction

between dimensionality and estimation programs, with BILOG yielding the smallest

RMSE for most of the study conditions. XCALIBRE and MULTILOG, however, were

associated with less variance in parameter estimates. These findings, combined with the

results of previous research, served as a basis for several guidelines offered by Kirisci

et al. for practitioners wanting to use unidimensional IRT models to estimate multidi-

mensional test parameters.

Kirisci et al. (2001) made three suggestions. First, it is necessary to assess the multidi-

mensional structure of the data because applying unidimensional IRT models may be per-

missible if there is only one dominant dimension with several minor dimensions. Second,

when there are several dimensions of approximately equal dominance, the magnitude

of the correlations between dimensions should be assessed. Citing earlier studies (e.g.,

Ackerman, 1989; Drasgow & Parsons, 1983; Harrison, 1986), Kirisci et al. suggested pro-

ceeding with unidimensional IRT models if the multiple dimensions are highly correlated

(r>.4). Finally, in the event that dimensions are not highly correlated (r ≤ .4) and/or the

correlations among them vary to a large degree, then MIRT should be applied. Although

multidimensionality can seriously affect the performance of unidimensionally based
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procedures, such as BILOG and LOGIST, these studies provide evidence that correlated

dimensions can mediate that influence, making such procedures adequate for item and

ability estimation.

Additionally, results from those investigations have corroborated Stout’s (1987,

1990) theory and test of essential unidimensionality that challenges the traditional unidi-

mensionality assumption of IRT. Stout argued that the presence of exactly one dominant

dimension (i.e., essential unidimensionality or dE = 1) even in the presence of other

unintentional dimensions is a sufficient and more psychologically appropriate require-

ment, considering the nature of achievement testing. If unintended dimensions influence

item responses to a large degree, however, Stout’s test of essential unidimensionality

should conclude that dE > 1, and practitioners would be advised against the use of stan-

dard IRT data analysis programs (Nandakumar, 1991).

Traditional DIF Analysis

DIF occurs when focal and reference group members of equal ability on the latent trait

of interest have different probabilities of answering an item correctly. In the event an item

exhibits DIF, a decision must be made about whether to retain the item or delete it from

the test. If the item seems to be biased against a subgroup, if the DIF magnitude is strong

enough to bias test results, and if a rationale exists for why it may exhibit DIF, then the

item should be deleted (Camilli & Shepard, 1994). Without a substantive review of the

item to understand the reason it resulted in DIF, however, test developers do not actually

know if the source of DIF is because of a construct-relevant or construct-irrelevant dimen-

sion being measured by the test (or perhaps just chance). Therefore, it is important to

thoughtfully interpret the nature of DIF so that differences between the groups’ cognitive

skills or opportunities to learn can be appropriately addressed.

DIF analyses are typically conducted in two steps: (a) statistical identification of items

that favor particular groups (including effect size measures of practical significance) fol-

lowed by (b) a substantive review of potentially biased items to locate the sources of DIF.

Although many advances have been made in the statistical analysis of DIF items, much

remains to be learned about how to pinpoint the reason that DIF occurs. During the sub-

stantive analysis of DIF, items are usually reviewed by subject-area experts (e.g., curricu-

lum specialists or item writers) in an attempt to interpret the factors contributing to

differential performance between specific subgroups of examinees. Even though this is an

important step in the process of eliminating bias and ensuring test fairness, studies indicate

that this method of substantive analysis has met with limited success (see Camilli &

Shepard, 1994; Engelhard, Hansche, & Rutledge, 1990; Gierl, Rogers, & Klinger, 1999;

O’Neill & McPeek, 1993; Roussos & Stout, 1996a; Standards for Educational and

Psychological Testing, 1999; Sudweeks & Tolman, 1993).

Remarking on the task of predicting DIF items without empirical evidence, Engelhard

et al. (1990) state that ‘‘the agreement between the judgmental and empirical indices of

DIF are very low and usually not better than what would be expected by chance’’ (p. 358).

In many cases, the judgments made by item reviewers tend to disagree either with DIF sta-

tistics or with one another. These inconsistencies may be attributable to the many possible
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hypotheses about why an item displays DIF that arise after DIF has been identified statisti-

cally. As a result, definitive conclusions about the sources of DIF are rarely drawn. Some

researchers believe that this is an inherent problem with single-item DIF analyses and

argue that more can be learned from studying groups of items simultaneously rather than

one at a time (Boughton, Gierl, & Khaliq, 2000; Douglas, Roussos, & Stout, 1996).

Although the current primary method of DIF analysis does not typically provide more

conclusive answers regarding DIF sources, a related procedure known as differential bun-

dle functioning (DBF) holds promise for addressing this problem.

DBF

Because substantive DIF analyses following the statistical identification of DIF items

have yielded little information in understanding the sources of DIF, methods have been

developed that use the results of substantive analyses (item review) to investigate statisti-

cally items believed to function differentially. That is, instead of seeking to interpret DIF

statistics for substantive meaning, the process (and therefore the logic) is reversed by first

forming substantive hypotheses regarding potential DIF items and then testing those items

statistically. In particular, Douglas et al. (1996) introduced the concept of item bundle

DIF and the implications of DBF for identifying the underlying causes of DIF. A bundle

is any dimensionally homogenous set of items that is not necessarily adjacent or related to

a common text or passage (Douglas et al., 1996).

In DBF analyses, similar items are grouped together based on organizing principles

(e.g., content, item type, etc.) believed to affect the performance of different groups of

examinees. The basis for DBF analysis is the assertion that tests consist primarily of small

bundles of items designed to measure a certain trait, skill, or ability. Similarly, Gierl,

Bisanz, Bisanz, Boughton, and Khaliq (2001) assert that ‘‘sources of DIF may be more

apparent in patterns across multiple items rather than in performance characteristics asso-

ciated with single items’’ (p. 27). Also research has shown that methods for statistically

identifying bundles or groups of items are more powerful than those which analyze items

one at a time (Nandakumar, 1993). Douglas et al. (1996) note that the amount of DIF in a

single item might be small enough that it would not be detected statistically but that small

amounts can add up to an undesirable amount when they are present in several items.

Hence, DBF analysis is preferable to DIF analysis when bundling permits small differ-

ences in group performance on individual items to be amplified. Furthermore, the DBF

approach of examining potential sources of DIF by identifying suspect item bundles has

great implications for improving test design and psychological measurement.

Bundle Formation

Although any number of organizing principles can be used to identify items suspected

of measuring multiple abilities, prior studies have used four methods in particular. The

methods can be classified as exploratory versus confirmatory, depending on the manner in

which they are employed and/or the rationale for using a specific bundling strategy. First,

a test’s dimensionality structure can be assessed using test specifications that outline both
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the content area and cognitive skill categories that the test is designed to measure. A list

of test specifications serves as the blueprint to guide item writers when sampling items

from the achievement domain. These items are also designed to measure specific cognitive

skills and processes. Therefore, a detailed analysis of test specifications may highlight

subsets of items that measure a number of different dimensions associated with certain

content and skill areas (Gierl, Tan, & Wang, 2005).

For example, Oshima, Raju, Flowers, and Slinde (1998) demonstrated DBF analysis

using the cognitive dimensions measured by the reading comprehension portion of the

Metropolitan Achievement Test as well as by bundling the items associated with reading

passages. Although cognitive classifications did not appear to elicit differential function-

ing, Oshima et al. did find large DBF in favor of boys for a reading passage titled ‘‘The

Roadrunner: A Strange Bird.’’ They were able to interpret the potential cause of the differ-

ential functioning by reasoning that boys were possibly more familiar with the context of

the passage that described characteristics of the roadrunner such as, its diet and speed.

As a second method, the dimensionality structure of a test can be uncovered through

the use of subject-area experts who use their experience to identify specific dimensions

through a thorough analysis of test content. A content analysis may be conducted during

either an item review session with content specialists or a review of the literature for judg-

ments regarding the content of well-known tests such as the SAT (e.g., Douglas et al.,

1996; Gierl & Bolt, 2003; O’Neill & McPeek, 1993). For example, Douglas et al. (1996)

used a panel of experts to select item bundles from a test deemed to be essentially unidi-

mensional. They argued that this method is especially appropriate in cases in which a test

is so dominated by the target dimension that many statistical dimensionality assessment

tools would be unable to detect minor unintended dimensions.

Third, cognitive psychology can be used to identify dimensions on which certain groups

are hypothesized to differ in ability. Although examples in the literature are scarce,

research is underway that uses cognitive theory to predict group differences on specific

item types. For example, Gallagher et al. (2000) used high school and college students to

investigate gender differences in advanced mathematical problem solving on Scholastic

Aptitude Test–Mathematics and Graduate Record Examination–Quantitative, respec-

tively, by dividing math problems into two main types (conventional and unconventional),

based on the cognitive processes associated with answering the items correctly. Using

‘‘think aloud’’ problem solving with a group of high-ability high school students, Galla-

gher et al. found that males tended to be more flexible in their use of problem-

solving strategies, whereas females tended to employ conventional problem-solving algo-

rithms to solve advanced mathematical problems.

Finally, unintended dimensions can be identified using statistical dimensionality assess-

ment tools. Using a mixed exploratory and confirmatory approach, Douglas et al. (1996)

combined hierarchical agglomerative cluster analysis (HCA) and DIMTEST, a nonpara-

metric statistical dimensionality test based on Stout’s (1987) concept of essential unidi-

mensionality, to identify suspect item bundles. First, an exploratory dimensionality

analysis was performed so that DIF hypotheses could be developed and then tested with a

cross-validation sample. Results revealed a six-item bundle measuring an additional

dimension interpreted as ‘‘knowledge of some important documents in early American
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history’’ (Douglas et al., 1996, p. 477). When tested for DIF, the bundle was found to

favor females.

It should be noted that all the methods described above include assumptions and limita-

tions that make them more or less desirable in certain contexts. For example, cognitive

classifications listed in a table of test specifications are developed by item writers who try

to anticipate steps in the cognitive process that examinees typically follow in arriving at

correct answers. Item writers, however, are often content experts, such as teachers and

curriculum specialists, who are not usually trained to identify these mental processes.

Furthermore, cognitive skill categories are often based on the taxonomy of educational

objectives developed by Bloom, Englehart, Furst, Hill, and Krathwohl (1956), which has

been shown to be inadequate for classifying or predicting students’ cognitive processes on

tests of math achievement (Gierl, 1997). As a result, care must be taken in deciding

whether to rely on a single organizing principle or whether the research goal is best met

by using a combination of strategies.

Regardless of the type of organizing principle used, creating bundles is only a first step

in the two-stage Roussos-Stout DIF analysis paradigm (Roussos & Stout, 1996a). The first

stage can be described as a substantive analysis of the dimensional structure of a test. It is

substantive to the extent that the dimensions are actually interpretable and can be identi-

fied as target or nuisance. If nuisance dimensions exist, they are bundled together to repre-

sent dimensionality-based DIF hypotheses that, in the second stage of DIF analyses, are

tested for statistical significance.

Simultaneous Item Bias Test (SIBTEST)

SIBTEST was developed by Shealy and Stout (1993a, 1993b) as an outgrowth of their

MMD. SIBTEST is an IRT-based method that models the relationship between item per-

formance and the latent trait(s) measured by a test. This method can test for significant

DIF amplification that occurs when a group of DIF items act together to produce DBF. In

the MMD, the latent (e.g., ability) space measures target (y) and nuisance (Z) traits. The

SIBTEST method uses a parameter estimate (b̂UNI) to indicate the magnitude of DIF in an

item. For large samples, b̂UNI has a normal distribution, with a mean of 0 and a standard

deviation of 1, under the null hypothesis of no DIF. The statistical hypothesis tested by

SIBTEST is

H0 : bUNI = 0 vs: H1 : b UNI 6¼ 0: ð1Þ

Here, bUNI is defined as follows:

bUNI =
Z

P(y, R)� P(y, F)½ �fF(y) dy ð2Þ

where P(y, R) and P(y, F) are the probabilities of a correct response (conditional on y) for

examinees in the reference and focal groups, respectively. The expression fF(y) is the den-

sity function for y in the focal group. bUNI is integrated over y and yields a weighted

expected score difference between reference and focal group examinees of equal ability
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on a specific item or bundle. A statistically significant positive value of b̂UNI represents

DIF against the focal group, and a statistically significant negative value indicates DIF in

favor of the focal group.

SIBTEST requires that test items be divided into a ‘‘studied’’ subtest of items believed

to exhibit DIF and a matching or ‘‘valid’’ subtest of items believed to be DIF free. That is,

the studied subtest contains the items or bundle believed to measure the target and nui-

sance dimensions, whereas the matching subtest contains the items believed to measure

only the target dimension. Examinee performance on items is compared by placing refer-

ence and focal group members into subgroups at each score level on the matching subtest.

An unbiased estimate of bUNI(b
_

UNI) is obtained using the weighted mean difference

between the reference and focal groups on the studied item/bundle across the K matched

ability subgroups, or

b̂UNI =
XK

k= 0

pk Y *
Rk � Y *

Fk

� �
, ð3Þ

where the proportion of focal group examinees in subgroup k is represented by pk, and

Y *
Rk � Y *

Fk is the difference in the adjusted means on the studied subtest item or bundle for

examinees in the reference and focal groups, respectively, in each subgroup k. Shealy and

Stout (1993a) added a regression correction to adjust the means on the studied subtest item

or bundle to account for any differences in the target ability distributions of the reference

and focal groups.

DIF/DBF Research

The first study involving DBF was conducted by Douglas et al. (1996) who demon-

strated the use of two methods for selecting item bundles suspected of exhibiting gender

DIF amplification. Method 1 used a panel of judges to identify bundles of items that

appeared to measure abilities in addition to the target ability (i.e., logical reasoning) using

data from a standardized administration of the logical reasoning subtest of the Law School

Admission Test. Using this method, the panel was able to form eight suspect item bundles,

thus eight DIF hypotheses, to submit for statistical analysis. Method 2 was a mixed

exploratory-confirmatory approach to identifying suspect bundles. This portion of the

study involved a statistical IRT dimensionality analysis followed by the use of expert opi-

nion to develop DIF hypotheses based on the number and type of dimensions that were

identified statistically.

In both methods, SIBTEST was used to analyze the bundles for differential bundle/test

functioning. For the example used with Method 1, although only four of the eight DIF

analyses were statistically significant, Douglas et al. (1996) found that for seven of the

eight bundles, the direction of DIF hypothesized by the panel of judges agreed with statis-

tical results obtained with SIBTEST. Method 2 was illustrated using a 36-item National

Assessment of Educational Progress (NAEP) history examination. The statistical dimen-

sionality analysis augmented by expert opinion yielded a statistically significant six-item

bundle, with three of the items not having statistically significant DIF at the 0.05 level
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when a standard one-at-a-time DIF analysis was conducted. That an unintended dimension

could be identified as the source of DBF on the NAEP history exam illustrates the useful-

ness of these methods in identifying the causes of DIF/DBF in general.

Research has also demonstrated the use of DBF analysis for enhancing the interpretabil-

ity of DIF results and how using different ‘‘organizing principles’’ for bundling items can

improve the substantive review of flagged DIF items (see Gierl et al., 2001; Gierl & Kha-

liq, 2001). Although the literature on DBF in applied contexts appears to be growing, to

date, there has been only one simulation study that has examined the performance of

SIBTEST in detecting DBF. A recent simulation study by Russell (2005) assessed the

Type I error rate and empirical power of SIBTEST for dichotomously scored items.

Russell (2005) used multidimensionality to produce differential item/bundle function-

ing in simulated item responses and used SIBTEST for DBF detection under a variety of

conditions using an alpha of .01 and 50 replications. The variables in the Type I error por-

tion of the study were dimensionality (items in the studied bundle were generated to be

either unidimensional or multidimensional), test length (10 items and 20 items), sample

size (N= 500 and N= 1,000 in both the reference and the focal group), and target ability

differences against the focal group, also known as impact (standardized differences of 0.0,

0.5, and 1.0). In conditions with no target ability differences, the average Type I error rate

was 0.015 for conditions with the unidimensional bundle and 0.03 for conditions with the

multidimensional bundle. In conditions with target ability differences, however, the Type

I error rates greatly increased. The average Type I error rate in conditions with target abil-

ity differences with a unidimensional bundle was 0.523 and 0.238 with a multidimensional

bundle. Russell concluded that when subgroups differ greatly on the target ability, SIBT-

EST is more likely to identify the impact mistakenly as DIF/DBF.

The portion of Russell’s (2005) study on statistical power included 24 unique combina-

tions of total sample size (1,000 and 2,000), test length (10 items vs. 20 items), target abil-

ity differences or impact (0.0, 0.5, and 1.0), and nuisance ability differences (0.5 and 1.0).

SIBTEST demonstrated an overall empirical power of 0.725, with the proportion of true

positives in a single condition ranging from 0.22 to 1.00. Greater power to detect DBF

was observed for longer tests and for larger sample sizes. For conditions involving target

ability differences, SIBTEST performed best when impact was minimal. Finally, nuisance

ability differences exhibited a large influence on power for both techniques. DBF power

for SIBTEST reached as high as 1.00 for various conditions involving large nuisance abil-

ity differences.

The literature also includes studies that specifically examine the performance of SIBT-

EST for detection of DIF at the item and test level rather than the bundle level. One of the

earliest such investigations was conducted by Nandakumar (1993) who used SIBTEST to

study simultaneous DIF amplification and cancellation. By varying sample size, test

length, percentage of DIF items, and direction of DIF with simulated data, Nandakumar’s

(1993) study helped to establish SIBTEST as an effective procedure for studying DIF at

the item and test level. In the study, SIBTEST was compared with the Mantel-Haenszel

technique and found to perform similarly across conditions in the assessment of DIF at the

item level. At the test level, SIBTEST successfully estimated the cumulative effect of

DIF. That is, whether DIF was amplified to produce differential test functioning or
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cancelled out because of bidirectional DIF in individual items, SIBTEST was capable of

assessing both.

Primacy of the Target Dimension and DIF Detection

One variable previously shown to affect DIF detection is related to item discrimination

and whether a multidimensional item has a higher discrimination for the target dimension

or for the nuisance dimension (which can be quantified as angular item direction, Reckase

& McKinley, 1991). Because a test that unintentionally includes multidimensional items

is certainly not designed to measure a nuisance dimension, it is reasonable not to expect

those items to be a better measure of the nuisance dimension than the target dimension. In

practice, however, this may be more commonplace than previously thought. In mathe-

matics, story or word problems are item types that typically exhibit this behavior. For

example, consider the following set of multiple choice items (Reckase, 1985, p. 411)

designed to measure mathematical ability:

Although Item 9 seems to measure only math ability, Item 20 appears to be measuring

both math and reading ability. It is possible that Item 20 has a higher-discrimination value

for the reading dimension than for the math dimension.

Few studies have examined the impact of the primacy of the target dimension (e.g.,

whether the target dimension has a higher discrimination than that of the nuisance dimen-

sion) on the detection of DIF, and none have investigated its effect on DBF analysis. One

study by Oshima and Miller (1992) observed increases in power (with four DIF detection

methods) when multidimensional items embedded with DIF measured the nuisance

dimension more than the target dimension (i.e., had a high angular item direction). The

9. j−5j+ j6j+ (−5)+ 6= ?

A. −22

B. −10

C. 2

D. 10

E. 12

20. A serving of a certain cereal, with milk, provides 35% of the potassium required daily

by the average adult. If a serving of this cereal with milk contains 112 milligrams of

potassium, how many milligrams of potassium does the average adult require each

day?

A. 35

B. 39

C. 147

D. 320

E. 392
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results of that study highlight the usefulness of item dimensionality assessment for enhan-

cing DIF detection.

In summary, DBF seems very promising for understanding why items are biased.

Although a number of studies have demonstrated methods for creating bundles and useful

applications of DBF analysis, there has been little simulation work examining how SIBT-

EST performs in identifying DBF. The purpose of this study was to assess the perfor-

mance of SIBTEST for DBF analysis under various conditions with simulated data.

Therefore, this study examined how Type I error and power rates of SIBTEST are affected

by multiple levels of various manipulated conditions that applied researchers often

encounter.

Method

A Monte Carlo simulation study was conducted to assess the performance of the SIBT-

EST procedure for detecting DBF under various conditions often encountered by applied

researchers. The independent variables under investigation were test length, total sample

size, the sample size ratio of reference to focal group members, the correlation between

the target and nuisance dimensions, the magnitude of DIF/DBF, the percent of items in

the test that were part of the bundle, and the primacy of the target dimension. The impact

of these variables on power and Type I error performance was the primary focus of the

investigation.

The item parameters used to generate unidimensional data across all of the conditions

(see the appendix) were selected from Raju, van der Linden, and Fleer’s (1995) study of

DIF. These parameters were reported to have item characteristics typically found in real

testing situations. The same item parameters were used for both the focal and reference

group. Item parameters within the multidimensional bundle were held constant for all

items with a difficulty parameter value of 0 and a guessing parameter value of 0.2. The

discrimination values used are described below. For conditions with no DIF/DBF and no

impact, both the focal group and the reference group had a mean ability of 0 on the target

ability dimension, with a standard deviation of 1. In conditions with DIF/DBF present,

simulees in the reference group had a mean ability of 0 on the nuisance dimension, with a

standard deviation of 1; mean differences were applied to the focal group so that they

would have a lower ability on this nuisance dimension. This process will be elaborated on

below.

Independent Variables

Two levels of test length were used to represent a short test (20 items) and a test of

moderate length (40 items). To examine the effect on DBF detection of the percentage of

items that contain DIF, two levels of percentage of items containing DIF were used, 10%

and 25%; all items that had DIF were included in the bundle, and no items outside of the

bundle contained DIF. This resulted in bundles of either 2 or 5 items from the 20-item test

and bundles of either 4 or 10 items from the 40-item test; an additional value for number
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of DIF items in the bundle (5 items) was used for a 40-item test in a separate portion of

the design (which will be elaborated on below).

Three levels of overall sample size (1,000, 2,000, and 5,000) as well as two different

sample size ratios of reference group to focal group members (50/50 and 90/10) were used

in this study. Although sample size is one of the most commonly studied conditions simu-

lated in DIF research, it is an important factor to include here as a control for absolute

sample size when sample size ratios are also being manipulated. Instances in which the

ratio of reference to focal group members in the population might be expected to be

approximately equal would include studies of gender DIF in which there are relatively

equal numbers of boys and girls (who constitute the reference and focal groups, respec-

tively). An example of the second instance (unequal proportions) might be when a large

number of White students take an exam compared with a smaller number of Black or

Hispanic students.

Another condition of interest in this study was the impact of different correlations

between the target and nuisance dimensions. Because prior research (e.g., Kirisci, Hsu, &

Yu, 2001) has suggested the use of unidimensional IRT methods when the correlation

between dimensions is moderate-to-large (e.g., r > .40), this study examined the effect of

correlations between dimensions on Type I error and power rates of SIBTEST. Three

levels of correlation between the target and nuisance dimensions were used in this study:

.316, .632, and .837, which correspond to squared correlations of .1, .4, and .7, respec-

tively. This range of values represents interdimension correlations that are considered to

be low, medium, and high, respectively.

This study also examined the effect of varying the primacy of the target and nui-

sance dimensions. For one level of this variable, items were simulated to have a

higher discrimination on the target trait than on the nuisance trait (a1 = 1.00 and

a2 = 0.49). In the other level of this variable, items had higher discrimination on the

nuisance dimension than on the target dimension (a1 = 0.30 and a2 = 0.49), creating a

situation in which the items are more effective at discriminating on the nuisance

dimension than on the target ability dimension. Beyond switching the target dimen-

sion from primary to secondary, the choice of these specific pairs of discrimination

values was arbitrary, but they incidentally create an angular item direction of 26.18
and 58.58, respectively. All items in a bundle had the same pair of discrimination

values, which meant that for a given cell, either all of the items with DIF were better

at discriminating on the target dimension or all of the items with DIF were better at

discriminating on the nuisance dimension.

Another variable manipulated in this study was DIF magnitude, which was expressed as

a mean difference in the nuisance ability dimension between the focal group and the refer-

ence group. Shealy and Stout’s (1993a) model for DIF expresses the magnitude of DIF as

the difference between the conditional expectation of Z, given y, for the reference group

and focal group,

E½ZR|y�−E½ZF|y�= dZ − rdy, ð4Þ

where r is the correlation between the two dimensions (for the simple case in which the

correlation is the same for both the reference and focal groups), dy is the difference
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between the means of the focal and reference group on y (impact), and dZ is the

mean of the focal group on Z subtracted from the mean of the reference group on Z.

For the current study, the mean on the target ability was the same for both groups

(indicating no impact), resulting in a dy value of 0. Positive values of dZ indicate

DIF against the focal group, and negative values indicate DIF against the reference

group. In Nandakumar’s (1993) simulation study, two levels of dZ were chosen, 0.5

and 1.0, to represent moderate-to-large degrees of DIF. Four levels of DIF against

the focal group (dZ = f0:25, 0:5, 0:75, 1:0g) were included in this study to reflect small

to large amounts of DIF. The process of incorporating DIF will be elaborated on

below.

The procedure contains three studies in one design. The main portion of the design

was a power study, conducted to investigate the impact of several manipulated variables

on the ability of SIBTEST to detect DBF. This power study included 576 conditions,

fully crossing each of the independent variables (2 Test Lengths× 2 Percentages of

Items With DIF× 3 Total Sample Sizes× 2 Sample Size Ratios× 3 Correlations

Between the Target and Nuisance Dimensions× 4 Magnitudes of DIF× 2 Dimension

Primacies= 576).

In an effort to control for the number of items with DIF, an additional 144 cells were

incorporated in the design. The simulated test length was 40 items, 5 of those items

were simulated to have DIF, and the remaining conditions from the first part of the

design were crossed (3 Total Sample Sizes× 2 Sample Size Ratios× 3 Correlations

Between the Target and Nuisance Dimensions× 4 Magnitudes of DIF× 2 Dimension

Primacies= 144). In this way, the two levels of test length could be compared through a

common value for the number of items with DIF (5 items with DIF also occurs when

25% of 20 items have DIF), instead of just having common values for the percentage of

items with DIF.

A Type I error study was also conducted to examine false detection of DBF with SIBTEST

for multidimensional items. For the Type I error study, there were a total of 144 conditions

(2 Test Lengths× 2 Percentages of Items With DIF× 3 Total Sample Sizes× 2 Sample Size

Ratios× 3 Correlations Between Target and Nuisance Traits× 2 Dimension Primacies).

Data Generation

Unidimensional and multidimensional data for this design were generated according to

the conditions described above. IRTGEN (Whitaker, Fitzpatrick, Williams, & Dodd,

2003), a SAS macro program, was used to simulate unidimensional items. Multidimen-

sional items for the reference and focal groups were simulated using the SAS/IML pro-

gram GENMIRT (Kromrey, Parshall, Chason, & Yi, 1999).

For items measuring only the target ability (y), dichotomous data were generated using

the three-parameter logistic model (3PL),

P(ui = 1|y)= ci + ð1� ciÞ
eai(y�bi)

1+ eai(y�bi)
, ð5Þ
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where P(ui = 1|y) is the probability that an examinee correctly answers item i, ci is the

lower asymptote, bi is the item difficulty, ai is the item discrimination, and e represents

the base of the natural logarithm. A two-dimensional 3PL model was used to simulate

items measuring the target and nuisance dimensions,

P(ui = 1|y)= ci + ð1� ciÞ
eða
0
i
y+ diÞ

1+ eða
0
i
y+ diÞ

, ð6Þ

where P(ui = 1|y) is the probability of a correct response for item i given the θ vector of

abilities (for the two-dimensional case, y and Z), ci is the scalar lower asymptote for the

item, ai is the vector of item discriminations, and di is the scalar item difficulty. For condi-

tions involving no DIF, reference and focal group abilities on the target and nuisance traits

were generated according to a multivariate normal distribution, with a mean of 0 and a

standard deviation of 1. In the power studies, DIF was added to the multidimensional

items by increasing the mean ability of the reference group above that of the focal group

by 0.25, 0.50, 0.75, or 1.00 standard deviations on the nuisance dimension, depending on

the condition being tested.

After generating item response data, SAS was used to call the DOS-based version of

SIBTEST and to produce output files for the DBF analyses for each of 1,000 replications

for each cell. Power and Type I error rates were calculated for each cell by tallying the

number of times that SIBTEST detected statistically significant DBF in the bundle and

dividing by the number of replications. The alpha level was .05 for all conditions.

Results

Tables 1 through 4 display the results from the power study. Table 5 displays the mean

results for each level of each studied factor. Table 6 displays the results from the condi-

tions that had 40 items total, 5 of which had DIF. Table 7 displays the results from the

Type I error study. The results begin with a summary of the overall effect of each manipu-

lated variable on power and Type I error and then move on to a description of cells in

which power was at least 0.80.

Power Main Effects

Sample size and sample size ratio. Total sample size influenced the DBF detection

power of SIBTEST. As might be expected, higher power rates were associated with larger

sample sizes. For each total sample size, power was substantially higher for cells in which

the reference and focal group sizes were equal than for cells that had sharply unequal

group sizes (i.e., 90:10). With the 50/50 sample size ratio, mean power was 0.798

(SD= 0.258) across cells with N= 1,000, 0.893 (SD= 0.188) across cells in which

N= 2,000, and 0.969 (SD= 0.078) across cells in which N= 5,000. With the 90/10 sam-

ple size ratio, mean power was 0.566 (SD= 0.290), 0.727 (SD= 0.286), and 0.876

(SD= 0.205), respectively, across cells with N= 1,000, N= 2,000, and N= 5,000. For
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purposes of further discussion, sample size and sample size ratio will be discussed using

the harmonic mean of the groups’ sample sizes (~n):

Magnitude of DIF/DBF. DIF bundles were correctly identified by SIBTEST more often

for higher magnitudes of DIF/DBF. The average power for detecting a DIF/DBF magni-

tude of 0.25 was 0.499 (SD= 0.262). The average power was 0.815 (SD= 0.219), 0.932

(SD= 0.130), and 0.975 (SD= 0.069), respectively, for detecting DIF/DBF magnitudes of

0.50, 0.75, and 1.00.

Percentage of items with DIF. With 25% of the items containing DIF, power was

appreciably higher than when 10% of the items contained DIF. Mean power across the

conditions with 25% of the items containing DIF was 0.871 (SD= 0.218); mean power in

the cells in which 10% of the items contained DIF was 0.775 (SD= 0.288). The effect

was more pronounced in the cells in which the DIF items had a higher discrimination on

the nuisance dimension than on the target dimension.

Dimension primacy. Overall, primacy of the target dimension was influential in DBF

detection. Comparing the values in Tables 1 and 3 with those in Tables 2 and 4, it is

Table 1
Empirical Power for a1 = 1.00 and 10% of Items

Having Differential Item Functioning

Test Length

20 Items 40 Items

Nuisance Ability Difference, dZ

Ntot Nref Nfoc 0.25 0.5 0.75 1.00 0.25 0.5 0.75 1.00

ryZ = .316 1,000 900 100 .140 .285 .519 .676 .155 .371 .611 .816

500 500 .272 .614 .919 .980 .309 .756 .967 .998

2,000 1,800 200 .187 .483 .785 .928 .228 .586 .865 .972

1,000 1,000 .362 .884 .994 1.000 .496 .951 1.000 1.000

5,000 4,500 500 .374 .812 .987 1.000 .480 .928 .998 1.000

2,500 2,500 .704 .995 1.000 1.000 .834 1.000 1.000 1.000

ryZ = .632 1,000 900 100 .116 .250 .447 .620 .170 .322 .556 .750

500 500 .233 .564 .852 .975 .298 .678 .941 .997

2,000 1,800 200 .178 .447 .712 .910 .224 .538 .818 .964

1,000 1,000 .372 .800 .994 1.000 .437 .911 1.000 1.000

5,000 4,500 500 .328 .774 .972 1.000 .399 .884 .995 .999

2,500 2,500 .665 .995 1.000 1.000 .774 .999 1.000 1.000

ryZ = .837 1,000 900 100 .117 .255 .418 .623 .146 .288 .521 .740

500 500 .218 .539 .833 .966 .271 .645 .930 .994

2,000 1,800 200 .176 .376 .710 .894 .217 .495 .811 .956

1,000 1,000 .347 .801 .979 1.000 .427 .890 .997 1.000

5,000 4,500 500 .301 .739 .971 1.000 .365 .848 .992 .999

2,500 2,500 .631 .989 1.000 1.000 .744 .998 1.000 1.000
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evident that power to detect DBF across all conditions with SIBTEST was greater when

the nuisance dimension had a higher discrimination than the target dimension. Observed

power when a1 = 1:00 averaged 0.739 (SD= 0.288), whereas the cells with a1 = 0:30 had

an average power of 0.871 (SD= 0.218).

Correlation between target and nuisance dimensions. Power increased marginally as

dimensions became less correlated, with the average power in cells with ryZ = .837 being

0.791 (SD= 0.272), which increased only to 0.822 (SD= 0.253) when ryZ = .316.

Test length . Power was generally larger with a test length of 40 items than with a test

length of 20 items. Across the conditions with 40 total items, mean power was 0.827

(SD= 0.251), and across the conditions with 20 items, the mean power was 0.783

(SD= 0.273). There was an apparent interaction with DIF magnitude in that the power

increases seen from 20 items to 40 items were larger when DIF magnitudes were smaller

because perhaps of the fact that at and above dZ= 0:75, most of the power values were

quite high, regardless of simulated test length.

Table 2
Empirical Power for a1 = 0.30 and 10% of Items

Having Differential Item Functioning

Test Length

20 Items 40 Items

Nuisance Ability Difference, dZ

Ntot Nref Nfoc 0.25 0.5 0.75 1.00 0.25 0.5 0.75 1.00

ryZ = .316 1,000 900 100 .189 .458 .740 .941 .265 .616 .896 .989

500 500 .393 .878 .996 1.000 .541 .955 1.000 1.000

2,000 1,800 200 .290 .724 .951 .995 .424 .897 .998 1.000

1,000 1,000 .637 .995 1.000 1.000 .836 .999 1.000 1.000

5,000 4,500 500 .587 .981 1.000 1.000 .743 .998 1.000 1.000

2,500 2,500 .930 1.000 1.000 1.000 .992 1.000 1.000 1.000

ryZ = .632 1,000 900 100 .193 .453 .730 .910 .235 .562 .873 .977

500 500 .356 .841 .994 .999 .499 .966 1.000 1.000

2,000 1,800 200 .296 .718 .954 .996 .389 .852 .993 1.000

1,000 1,000 .581 .981 1.000 1.000 .783 1.000 1.000 1.000

5,000 4,500 500 .514 .981 1.000 1.000 .730 .998 1.000 1.000

2,500 2,500 .909 1.000 1.000 1.000 .983 1.000 1.000 1.000

ryZ = .837 1,000 900 100 .170 .428 .705 .894 .221 .557 .875 .971

500 500 .366 .831 .988 1.000 .468 .947 .998 1.000

2,000 1,800 200 .262 .678 .936 .993 .364 .857 .988 1.000

1,000 1,000 .586 .988 1.000 1.000 .747 .998 1.000 1.000

5,000 4,500 500 .539 .964 1.000 1.000 .701 .996 1.000 1.000

2,500 2,500 .886 1.000 1.000 1.000 .981 1.000 1.000 1.000
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Attaining Sufficient Power

The results presented so far describe the effects of the variables investigated in the

study. Now, we turn to presenting the results from an applied angle by explaining the con-

ditions in which power for detecting DIF/DBF was at least 0.80. These results can also be

found in Tables 1 through 4 in which the values that are at least 0.80 are listed in

boldface.

Among the 144 cells with dZ= 0.25, 25 cells had power of at least 0.80. The bulk of

these (20/25) occurred when the nuisance dimension was the primary dimension measured

by the items, with 14 of those 20 having power >0.90. In only two cells (r= :316 and

r= :837, with 40 total items, 25% of the items having DIF, and both ns= 2,500), was the

power 1.00, when dZ= 0.25.

Nearly two thirds (94/144) of the cells with dZ= 0.50 had power of at least 0.80, again

with the majority of those cells (59/94) having the nuisance dimension as the primary

dimension. Seventy-four cells had an average power greater than 0.90, and 30 cells aver-

aged a power of 1.00, only 6 of which occurred with a1= 1.00. Among the cells with

a1= 0.30 and 25% of the items containing DIF, only 4 cells did not have an average

Table 3
Empirical Power for a1 = 1.00 and 25% of Items

Having Differential Item Functioning

Test Length

20 Items 40 Items

Nuisance Ability Difference, dZ

Ntot Nref Nfoc 0.25 0.5 0.75 1.00 0.25 0.5 0.75 1.00

ryZ = .316 1,000 900 100 .156 .416 .661 .849 .194 .423 .728 .884

500 500 .335 .771 .970 .998 .381 .851 .987 1.000

2,000 1,800 200 .251 .607 .907 .991 .284 .700 .942 .996

1,000 1,000 .509 .966 1.000 1.000 .584 .977 1.000 1.000

5,000 4,500 500 .502 .927 .997 1.000 .524 .966 1.000 1.000

2,500 2,500 .842 1.000 1.000 1.000 .895 1.000 1.000 1.000

ryZ = .632 1,000 900 100 .171 .367 .587 .806 .168 .380 .590 .834

500 500 .314 .723 .957 .998 .297 .776 .981 .999

2,000 1,800 200 .226 .571 .860 .976 .235 .646 .910 .992

1,000 1,000 .502 .934 1.000 1.000 .494 .975 1.000 1.000

5,000 4,500 500 .412 .893 1.000 1.000 .480 .941 .997 1.000

2,500 2,500 .796 1.000 1.000 1.000 .867 1.000 1.000 1.000

ryZ = .837 1,000 900 100 .157 .336 .573 .782 .138 .373 .585 .840

500 500 .273 .683 .951 .998 .314 .744 .966 .998

2,000 1,800 200 .223 .549 .823 .974 .217 .596 .864 .980

1,000 1,000 .473 .937 .999 1.000 .487 .962 1.000 1.000

5,000 4,500 500 .380 .880 .992 1.000 .427 .927 .997 1.000

2,500 2,500 .776 .999 1.000 1.000 .840 1.000 1.000 1.000
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power of at least 0.80, all of which had ~n= 180 (which was the lowest harmonic mean in

this study).

Across the conditions with dZ= 0.75, all cells with ~n≥ 500 had average power values

greater than 0.80, and only 3 cells with ~n= 360 had values less than 0.80 (all 3 had

a1= 1.00 and 20 items total, with 10% of the items containing DIF). The remaining 12

cells in which power <.80 all had ~n= 180 and a1= 1.00. All the cells that had a1= 0.30

and 25% of the items with DIF had an average power more than 0.80; in fact, the average

power for each of those 36 cells exceeded 0.90, with two thirds of them reaching 1.00.

With a1= 0.30 and 10% of the items containing DIF, power exceeded 0.80 in all but 3

cells (minimum power= 0.701), and the power was 1.00 in 20 cells.

Of the 144 cells in which dZ= 1.00, only 6 had an average power less than 0.80, with

all 6 having ~n= 180 and a1= 1.00; five of the six cells that did not reach 0.80 had 10% of

the items containing DIF, and the sixth cell had 25% of 20 items containing DIF, with

r= .837 (power= 0.782). The lowest average power value with a1= 0.30 and 25% of the

items containing DIF was 0.991, with only 4 of the cells averaging less than 1.00. With

a1= 0.30 and 10% of the items containing DIF, only 10 cells had power less than 1.00,

and only 1 had power less than 0.90.

Table 4
Empirical Power for a1 = 0.30 and 25% of Items

Having Differential Item Functioning

Test Length

20 Items 40 Items

Nuisance Ability Difference, dZ

Ntot Nref Nfoc 0.25 0.5 0.75 1.00 0.25 0.5 0.75 1.00

ryZ = .316 1,000 900 100 .278 .695 .943 .998 .391 .815 .981 1.000

500 500 .575 .979 1.000 1.000 .734 .997 1.000 1.000

2,000 1,800 200 .468 .928 .999 1.000 .555 .986 1.000 1.000

1,000 1,000 .849 1.000 1.000 1.000 .941 1.000 1.000 1.000

5,000 4,500 500 .800 1.000 1.000 1.000 .913 1.000 1.000 1.000

2,500 2,500 .998 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ryZ = .632 1,000 900 100 .265 .666 .939 .991 .351 .801 .958 1.000

500 500 .520 .977 .999 1.000 .674 .992 1.000 1.000

2,000 1,800 200 .418 .893 .999 1.000 .518 .968 1.000 1.000

1,000 1,000 .791 1.000 1.000 1.000 .900 1.000 1.000 1.000

5,000 4,500 500 .762 1.000 1.000 1.000 .887 1.000 1.000 1.000

2,500 2,500 .990 1.000 1.000 1.000 .998 1.000 1.000 1.000

ryZ = .837 1,000 900 100 .260 .630 .905 .994 .298 .721 .946 .999

500 500 .512 .958 .998 1.000 .644 .994 1.000 1.000

2,000 1,800 200 .400 .875 .995 1.000 .489 .949 .999 1.000

1,000 1,000 .773 1.000 1.000 1.000 .876 1.000 1.000 1.000

5,000 4,500 500 .740 1.000 1.000 1.000 .848 1.000 1.000 1.000

2,500 2,500 .991 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Controlling for the Number of Items With DIF

Table 6 contains the power results for the portion of the design in which 144 cells

were run with 40 total items, 5 of which had DIF. These cells were included in the

design as a way to hold constant the number of items with DIF while varying test

length. There are two general comparisons involving these data that are relevant: A

comparison of the results in the a1 = 1.00 column of Table 6 with the 20 items col-

umn of Table 3 and a comparison of the results in the a1 = 0.3 column of Table 6

with the results in the 20 items column of Table 4. Although there is slight variation

between most of the corresponding cells, only 17 of the 144 cells had an absolute

difference greater than 0.02. The comparisons clearly illustrate that increasing the

total number of items, while holding constant the number of items with DIF, has

essentially no effect on the power to detect DIF/DBF when 5 items contain DIF. The

apparent main effect of test length found in the first part of the design seems there-

fore to be the result of the increase in the number of items with DIF that occurred as

happenstance when the total number of items was changed while holding constant

Table 5
Mean and Standard Deviation of Power for Each Level of Each Studied Factor

Power

M SD

Test length

20 items 0.783 0.273

40 items 0.827 0.251

Sample size with a 90/10 ratio

1000 0.565 0.290

2000 0.727 0.286

5000 0.876 0.205

Sample size with a 50/50 ratio

1000 0.798 0.258

2000 0.893 0.188

5000 0.969 0.078

Percentage of items in bundle

10 0.775 0.288

25 0.871 0.218

Dimensions’ correlation

.316 0.822 0.253

.632 0.802 0.265

.837 0.791 0.272

Differential item functioning magnitude

0.25 0.499 0.262

0.5 0.815 0.219

0.75 0.932 0.130

1 0.975 0.069

Target dimension discrimination

0.3 0.739 0.288

1 0.871 0.218
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the percentage of items that had DIF. The actual effect seen with the increase in total

number of items was the effect of increasing the number of items containing DIF.

Type I Error

As illustrated in Table 7, SIBTEST adhered closely to the nominal alpha level of .05.

Across all study conditions, the average Type I error rate was 0.047. The error rates ran-

ged from 0.04 to 0.06, with no meaningful pattern apparent for the slight differences in

the Type I error rates across the cells of the study.

Discussion

As with many DIF studies involving sample size (see Narayanan & Swaminathan,

1994; Roussos & Stout, 1996b; Shealy & Stout, 1993b), the results of this study indicate

an increase in the power to detect DIF/DBF as sample size increases. By varying the ratio

of the sample sizes of the focal and reference groups, it was clear that the harmonic mean

Table 6
Empirical Power for 40 Items With 5 Items Having Differential Item Functioning

a1

0.3 1.0

Nuisance Ability Difference, dZ

Ntot Nref Nfoc 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

ryZ = .316 1,000 900 100 0.285 0.668 0.938 0.998 0.171 0.387 0.648 0.844

500 500 0.623 0.990 1.000 1.000 0.322 0.764 0.967 0.999

2,000 1,800 200 0.477 0.923 0.999 1.000 0.249 0.626 0.904 0.988

1,000 1,000 0.865 1.000 1.000 1.000 0.555 0.958 1.000 1.000

5,000 4,500 500 0.817 1.000 1.000 1.000 0.480 0.928 1.000 1.000

2,500 2,500 0.994 1.000 1.000 1.000 0.843 1.000 1.000 1.000

ryZ = .632 1,000 900 100 0.257 0.647 0.909 0.988 0.141 0.355 0.604 0.795

500 500 0.557 0.976 1.000 1.000 0.300 0.713 0.953 0.995

2,000 1,800 200 0.407 0.900 1.000 1.000 0.214 0.563 0.859 0.975

1,000 1,000 0.797 0.999 1.000 1.000 0.470 0.935 0.999 1.000

5,000 4,500 500 0.760 0.997 1.000 1.000 0.416 0.905 0.998 1.000

2,500 2,500 0.987 1.000 1.000 1.000 0.811 1.000 1.000 1.000

ryZ = .837 1,000 900 100 0.206 0.605 0.895 0.989 0.153 0.305 0.556 0.749

500 500 0.560 0.960 1.000 1.000 0.282 0.683 0.929 0.997

2,000 1,800 200 0.399 0.885 0.995 1.000 0.215 0.532 0.846 0.969

1,000 1000 0.786 1.000 1.000 1.000 0.436 0.916 1.000 1.000

5,000 4,500 500 0.743 0.999 1.000 1.000 0.395 0.855 0.995 0.999

2,500 2,500 0.989 1.000 1.000 1.000 0.755 1.000 1.000 1.000
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was more important than the total number of examinees, with statistical power consis-

tently increasing as the harmonic mean increased. Applied researchers should therefore go

to some effort to keep both group sizes as large as possible rather than relying on one very

large group. Consider, for example, statistical power in the cells in which both groups had

500 cases. Increasing the reference group size to 4,500 generally resulted in a marked

increase in power, but increasing both group sizes to 1,000 from 500 (for a total increase

of only 1,000) consistently resulted in an even greater increase in power.

The impact of increasing dZ on DIF detection was not surprising, as higher amounts of

DIF should be detected at greater frequency than smaller amounts. The highest power

rates were observed for DIF magnitudes of 0.50 or greater, combined with high sample

sizes and low correlation between the target and nuisance dimension, although ryZ had a

relatively weak effect on power across the range used in this study. These results are con-

sistent with those obtained by Oshima and Miller (1992) regarding power and those of

Lee (2005) regarding the modest effect of ryZ.

Table 7
Type I Error Rates for the Multidimensional Item Bundle

Test Length

20 Items 40 Items

a1

0.3 1.0 0.3 1.0

Percentage of Items in Bundle

Ntot Nref Nfoc 10 25 10 25 10 25 10 25

ryZ = .316 1,000 900 100 .058 .065 .048 .055 .054 .047 .052 .052

500 500 .052 .042 .051 .060 .050 .053 .054 .068

2,000 1,800 200 .050 .065 .056 .046 .048 .056 .051 .048

1,000 1,000 .054 .060 .043 .037 .056 .053 .044 .061

5,000 4,500 500 .026 .043 .055 .044 .053 .042 .053 .045

2,500 2,500 .041 .044 .053 .037 .043 .040 .039 .043

ryZ = .632 1,000 900 100 .037 .046 .052 .047 .061 .055 .040 .064

500 500 .050 .049 .050 .047 .044 .058 .041 .055

2,000 1,800 200 .050 .052 .033 .045 .061 .059 .058 .060

1,000 1,000 .053 .044 .055 .051 .065 .054 .051 .048

5,000 4,500 500 .043 .053 .051 .039 .054 .039 .055 .042

2,500 2,500 .053 .045 .045 .057 .038 .061 .054 .051

ryZ = .837 1,000 900 100 .045 .063 .039 .056 .056 .051 .050 .053

500 500 .051 .049 .044 .057 .050 .053 .057 .055

2,000 1,800 200 .045 .057 .056 .063 .049 .047 .065 .048

1,000 1,000 .060 .054 .044 .042 .045 .046 .051 .045

5,000 4,500 500 .043 .051 .051 .036 .054 .060 .042 .057

2,500 2,500 .056 .054 .049 .059 .056 .063 .047 .062
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Power also increased as factors contributing to DIF amplification increased. As the

number of items with DIF increased, SIBTEST had greater power to detect DIF in

item bundles, even at the smaller magnitudes of DIF (it is, however, worth repeating

that the power performance of SIBTEST at dZ= 0.25 was not impressive). Substan-

tial gains in power occurred when the target dimension switched from being the pri-

mary dimension (a1 = 1.00, a2 = 0.49) to the secondary dimension (a1 = 0.30,

a2 = 0.49) measured by the items containing DIF. Those who are developing tests

might therefore have greater difficulty detecting DIF in items that strongly discrimi-

nate on the target dimension; this is potentially problematic because it is generally

considered preferable for items to have high values of a on the target dimension.

Future research should more thoroughly and deliberately manipulate angular item

direction to learn more about the effect of relative differences in the a-parameters on

DIF detection.

Type I error was assessed using bundles of multidimensional items containing no DIF.

SIBTEST consistently adhered closely to the nominal alpha level of .05. That inflated

Type I error was not observed in this study illustrates SIBTEST’s ability to distinguish

between benign multidimensionality and DIF. These findings support those from Oshima

and Miller (1992) and those found by Russell (2005) in comparable conditions with no

impact.

This study analyzed DBF created by having all items in the bundle contain DIF,

with all DIF favoring the reference group, while no items outside of the bundle con-

tained DIF. Future research should investigate conditions in which not every item in

the bundle contains DIF and conditions in which the bundles do not include all the

items that contain DIF. Future research should also be conducted on the power to

detect DIF when one or more items containing DIF that are within a bundle favor the

focal group along with items that favor the reference group, thereby investigating

various degrees of DIF cancellation. Another suggestion is to examine the interaction

between item difficulty and item discrimination and its effect on DBF detection with

SIBTEST. This study held difficulty constant across items within a bundle. It might

be the case that DIF becomes easier/harder to detect at different levels of item

difficulty.

In conclusion, there has been a push toward using more theory-driven tests for the

presence of DIF (Gierl et al., 2001) rather than examining statistically flagged DIF items

in an effort to patch together an explanation for the DIF that happened to be large

enough to be statistically significant. The use of a MMD has been supported in this study

that basically states that if you can identify a potential unintended dimension being mea-

sured by an item or a set of items and allow the possibility that examinee subgroups

exist that differ on that unintended trait, then a researcher can submit specific items for

DIF/DBF analysis and essentially test a substantive hypothesis about what is causing

DIF/DBF on a test. This study begins to address some of the methodological aspects of

DBF analyses and illustrates avenues for continued research into the application of DBF

analyses.
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Appendix

Item Parameters Used to Generate the
Unidimensional Item Response Data

Test Length

20 Items 40 Items

Number of Items in Bundle

a b c 2 (10%) 5 (25%) 4 (10%) 10 (25%) 5

0.55 0 0.2 X X X X X

0.55 0 0.2 X X X

0.73 −1.04 0.2 X X X X X

0.73 −1.04 0.2 X X X

0.73 0 0.2 X X X X X

0.73 0 0.2 X X X X X

0.73 0 0.2 X X X

0.73 0 0.2 X X X

0.73 1.04 0.2 X X X X X

0.73 1.04 0.2 X X X

1 −1.96 0.2 X X X X X

1 −1.96 0.2 X X X

1 −1.04 0.2 X X X X X

1 −1.04 0.2 X X X X X

1 −1.04 0.2 X X X

1 −1.04 0.2 X X X

1 0 0.2 X X X X X

1 0 0.2 X X X X X

1 0 0.2 X X X X X

1 0 0.2 X X X X X

1 0 0.2 X X X

1 0 0.2 X X X

1 0 0.2 X X X

1 0 0.2 X X X

1 1.04 0.2 X X X X X

1 1.04 0.2 X X X X X

1 1.04 0.2 X X X

1 1.04 0.2 X X X

1 1.96 0.2 X X X X X

1 1.96 0.2 X X X X

1 1.96 0.2 X X X

1 1.96 0.2 X X X

1 1.96 0.2 X X

1 1.96 0.2 X X

1 1.96 0.2 X X

1 1.96 0.2 X

Note: An ‘‘X’’ indicates that the item parameters were included in those conditions.
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