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An approach called generalizability in item response modeling (GIRM) is introduced
in this article. The GIRM approach essentially incorporates the sampling model of
generalizability theory (GT) into the scaling model of item response theory (IRT) by
making distributional assumptions about the relevant measurement facets. By spec-
ifying a random effects measurement model, and taking advantage of the flexibility
of Markov Chain Monte Carlo (MCMC) estimation methods, it becomes possible to
estimate GT variance components simultaneously with traditional IRT parameters.
It is shown how GT and IRT can be linked together, in the context of a single-facet
measurement design with binary items. Using both simulated and empirical data
with the software WinBUGS, the GIRM approach is shown to produce results com-
parable to those from a standard GT analysis, while also producing results from a
random effects IRT model.

As measurement models, item response theory (IRT) and generalizability theory
(GT) seem, on the surface at least, incompatible. Brennan (2001a), for example,
writes “Generalizability Theory is primarily a sampling model, whereas IRT is prin-
cipally a scaling model.” Nonetheless, because each approach can provide informa-
tion fundamental to the design and analysis of measurement instruments, one might
expect to see IRT and GT applied in tandem, both in large-scale testing and smaller
scale efforts (see, for example, Bock, Brennan, & Muraki, 2002). In practice, the use
of IRT alone seems considerably more prevalent in the measurement literature than
the sequential use of both IRT and GT.

In this article we introduce an approach we call “Generalizability in Item Re-
sponse Modeling” (GIRM). The GIRM approach essentially incorporates the sam-
pling model of GT into the IRT “scaling model” by making distributional assump-
tions about the relevant measurement facets. Given these assumptions, and taking
advantage of the flexibility of Markov Chain Monte Carlo (MCMC) estimation meth-
ods, it becomes possible to estimate GT variance components within the same frame-
work, and simultaneously, with traditional IRT parameters. The underlying model of
the GIRM approach comes from IRT, but the results from this model are used as the
basis for a GT analysis. In essence, what we are calling the GIRM approach performs
a GT analysis on a matrix of expected, rather than observed, item responses. It is our
introduction of this matrix of expected item responses, and our approach to estimat-
ing a distribution of values for each element of this matrix, that are the principal new
methodological contributions of our article. The objectives of this article are to (1)
present the details of the GIRM approach, (2) show that it can produce results compa-
rable to those of GT for a simple measurement design, and (3) test the robustness of
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the approach to some violations of the principal assumptions that distinguish it from
GT. Along the way we will highlight what we view as some interesting similarities
and distinctions between GT and IRT.

There are five sections to this article. In the first two sections, we briefly present
GT, and then a random effects IRT model that is consistent with GT sampling as-
sumptions. In the third section we present the GIRM approach by way of showing
how GT and IRT can be linked together in the context of a single-facet measurement
design with binary items. In the fourth section, using simulated data and MCMC es-
timation procedures within the software WinBUGS, we demonstrate how the GIRM
approach can produce results equivalent to those from a standard GT analysis, and
we test the sensitivity of the approach to several key assumptions. In the fifth sec-
tion, we apply both the GIRM approach and GT to an empirical dataset, and show
how the use of results in the language of both GT and IRT can serve to strengthen
interpretations about the design and analysis of a measurement instrument. In the
last section, we discuss some of the apparent strengths and limitations of the GIRM
approach.

Generalizability Theory

In classical test theory, a person’s observed test score, X, is modeled linearly as
the sum of a “true score” T and “error,” ε: X = T + ε. GT has been described as a
liberalization of classical test theory because it helps to differentiate, using ANOVA-
like procedures, the multiple sources of error that comprise ε. In GT terminology, a
potential source of measurement error is called a facet. For example, the facets of an
achievement test might include items, raters, test forms, or test administrators. The
conditions of each facet of any particular test are viewed as a random sample from the
“universe of admissible observations.” A person’s expected score, taken as an aver-
age across all possible facet conditions, will generally not equal a person’s observed
score for the set of facet conditions sampled for use in any given measurement. The
difference between the observed score and expected score can be explained in part
by facet-based measurement error. The key question in GT is the degree to which a
person, responding a certain way to a measurement instrument with randomly sam-
pled facet conditions, would respond approximately the same way when faced with
a different random sample of facet conditions.

A GT analysis has two stages. In the first stage, called a generalizability study (G
Study), the relevant facets in a measurement design are defined along with the uni-
verse of admissible observations for these facets (i.e., the populations from which the
facets are presumably sampled). A G Study proceeds by estimating variance com-
ponents for a single condition of each facet main effect and facet interaction in the
measurement design. In the second stage, called a Decision Study (D Study), it is
determined how much an increase or a decrease in the number of conditions for a
particular facet would decrease or increase the various types of error variance in the
measurement procedure, and thus increase or decrease the generalizability (reliabil-
ity). When a measurement procedure is multifaceted, the results of a D Study will
suggest the optimal combination of facet conditions (i.e., number of items, raters,
test forms, and test administrators) necessary to secure some minimum level of
generalizability.
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We illustrate the GT approach using a single-facet measurement design and no-
tation that is for the most part consistent with that presented by Cronbach, Gleser,
Nanda, and Rajaratnam (1972) and Brennan (2001a). Let Xpi be the dichotomous
observed score of person p ( p = 1, . . ., P) on item i (i = 1, . . ., I). This scenario is
represented in a G Study as a p × i design, where p is the object of measurement
and i is the facet. The strongest and most fundamental assumption of GT is that the
object of measurement and measurement facets, persons and items, are sampled in-
dependently and at random from some population of persons and a “universe” of
items. The observed score Xpi, based on the combination of any one-person p and
any one-item i, is considered a random variable. We further assume that the design
is balanced.1 The grand mean across persons and items is defined as

µ ≡ E
p

E
i

X pi . (1)

Next, we can define a person-specific mean as

µp ≡ E
i

X pi , (2)

and then the item-specific mean as

µi ≡ E
p

X pi . (3)

Given these definitions, a linear model for observed score Xpi can be written as

X pi = µ + v p + vi + v pi,e, (4)

where the successive terms to the right of the observed score Xpi are, respectively,
µ, the grand mean; vp = µ p − µ, the person effect; vi = µi − µ, the item effect;
and v pi,e = Xpi − µ p − µi + µ, the residual/interaction effect. Note that in this
expression the concept of “error” is defined in terms of that which is left over (the
residual) when person and item effects are subtracted from the grand mean. This term
is sometimes described as the p by i interaction effect confounded with all remaining,
unspecified sources of random error.

We assume2 that all effects are uncorrelated. In formalizing this, we follow the
convention presented by Brennan (2001a), letting a prime designate a different per-
son or item:

E(v pv p′ ) = E(vi vi ′ ) = E(v pi,ev p′i,e) = E(v pi,ev pi ′,e) = E(v pi,ev p′i ′,e) = 0, (5)

E(v pvi ) = E(v pv pi,e) = E(vi v pi,e) = 0. (6)

The variance components for the person, item, and person by item effects are,
respectively
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σ 2(p) = E
p

(µp − µ)2, (7)

σ 2(i) = E
i

(µi − µ)2, and (8)

σ 2(pi, e) = E
p

E
i

(X pi − µp − µi + µ)2. (9)

This leads to the decomposition of the total variance of observed scores as

σ 2(X pi ) = σ 2(p) + σ 2(i) + σ 2(pi, e). (10)

The culmination of the G Study stage is estimating values for these unobservable
variance components using a series of expected mean square equations (Cornfield &
Tukey, 1956; Searle, Casella, & McCulloch, 1992). In this case:

EMS(p) = σ 2(pi) + niσ
2(p), (11)

EMS(i) = σ 2(pi) + n pσ
2(i), and (12)

EMS(pi, e) = σ 2(pi, e). (13)

In the equations above ni and np represent the number of items and persons sampled
for the G Study, respectively. We estimate σ̂ 2(·) in this system of three equations with
three unknown values by replacing EMS(·) with the observed mean square errors
MS(·), calculated from the observed scores in a person by item matrix, as illustrated
in Figure 1.

Solving the system of equations that result from substituting the values of observed
mean squares for the expected mean squares in Equations (11–13) leads to the G
Study variance component estimates σ̂ 2(p), σ̂ 2(i), and σ̂ 2(pi, e).

FIGURE 1. Observed response matrix in GT.
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In a subsequent D Study, the “decision” to be made is the number of sampled
conditions of a facet (e.g., n′

I ) to be included in the measurement instrument. The
observed score variability of an instrument due to a particular facet decreases as
more conditions of that facet are included as part of the design. For the p × I design
(where an upper case I denotes that scores are now computed as an average over a set
of items), as more items are included in the measurement instrument, the observed
score variance associated with the item facet σ̂ 2(I )

n′
I

and the person by item interaction

σ̂ 2(pI ,e)
n′

I
decreases. If the aim is to generalize the test results from a sample of items to

the larger universe of items they are intended to represent, then the less that observed
score variance is due to the sampling instances of the item facet and its interactions,
the higher the generalizability of the measurement procedure on the whole.

The generalizability of observed scores are summarized in a D Study by two in-
dices, Eρ2 and �. For the p × I example,

E ρ̂2 = σ̂ 2(p)

σ̂ 2(p) + σ̂ 2(pi, e)

n′
I

(14)

�̂ = σ̂ 2(p)

σ̂ 2(p) + σ̂ 2(pi, e)

n′
I

+ σ̂ 2(i)

n′
I

. (15)

In the GT literature, these two indices have been called the generalizability coef-
ficient and index of dependability, respectively. We prefer to describe both indices
as generalizability coefficients, where the principle distinction is whether observed
scores are being used to make relative (i.e., norm-referenced) or absolute (i.e.,
criterion-referenced) decisions. For relative decisions (e.g., who were the top scorers
on the test?), only the standing of persons relative to others persons is of interest, so
only sources of error that interact with the object of measurement, known as relative
error variance, are added to σ̂ 2(p), in the denominator. For the p × i design, E ρ̂2

is equivalent to Cronbach’s coefficient α. For absolute decisions (e.g., how many
students passed the test?), the error variance of the item facet main effect (and all
other main effects in more complex designs) is added to the denominator, and this
comprises absolute error variance. It follows that the generalizability for absolute
decisions will always be smaller than that for relative decisions.

We note in passing that the generalizability coefficients presented above are a func-
tion of both the quality of a particular measurement procedure, and the sample to
which the instrument has been applied. If true variance in the sample is very small,
then even if the quality of the procedure is high in an absolute sense (i.e., little mea-
surement error), a generalizability coefficient will be low. Conversely, if true variance
is large, then even if a procedure is very inaccurate (i.e., large measurement error),
a generalizability coefficient will remain high. Because of this, the interpretation of
these sorts of coefficients can sometimes be misleading, and it is often preferable,
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or at least complementary, to report the square root of relative and absolute error
variance as relative and absolute standard errors of measurement.

For the p × I example used here, it is the difference between relative and absolute
error variance that distinguishes GT from CTT. That is, if score inferences are to be
generalized in an absolute sense, it will matter a great deal to the object of measure-
ment whether the measurement procedure, by chance, consisted of items that were
very difficult to answer. On the other hand, for score inferences to be generalized
only in a relative sense, it makes no difference from the perspective of GT whether
the measurement procedure is based upon items that were extremely hard or easy by
chance, as all objects of measurement are affected the same way. For more complex
(i.e., multifaceted) measurement designs, the key benefits of GT are both the distinc-
tion between relative and absolute error variance, and the unique attribution of each
measurement facet as a source of both absolute and relative error variance.

Item Response Theory as a Random Effects Model

A measurement procedure can be modeled using IRT for purposes that may well
be complementary to a GT analysis. Though, as the name implies, IRT is typically
intended for the analysis of how subjects respond when faced with a set of items,
“items” are often defined quite flexibly to make IRT applicable to most of the same
measurement procedures found in GT. The p × i design with dichotomous items
could be modeled using IRT according to the item response function

P(θp, βi ) = P(X pi = 1 | θp, βi ) = exp (θp − βi )

1 + exp (θp − βi )
. (16)

This is an example of what is commonly known as the one parameter logistic, or
Rasch model. The probability of a correct response to the observed item score Xpi

is modeled as a nonlinear function of person proficiency, θp, and item difficulty, β i .
To be consistent with GT, we would need to interpret P(θ p, β i) as the probability
that a randomly sampled person with ability θp will respond correctly to a randomly
sampled item with difficulty β i . Other item response functions with additional item
parameters could be chosen to model the p × i design, but here we use the Rasch
model because it is the simplest and most easily interpretable item response model.

In common with other item response models, the Rasch model assumes statisti-
cal independence across p, and conditional independence across i given θ . It is fur-
ther typically assumed that the latent variable θ being measured is unidimensional.
Now, when the Rasch model is estimated with θp and β i as fixed effects, Brennan’s
characterization of IRT as primarily a scaling model is accurate. However, in most
large-scale uses of item response models, an implicit sampling model for persons is
incorporated through the use of marginal maximum likelihood estimation (cf. Hol-
land, 1990). The assumption under marginal maximum likelihood is that the latent
variable for each person is drawn at random from some population distribution of
interest. This brings item response models much closer to the assumptions of GT. If
we take the next step, and assume that person and item parameters are each drawn

136



Generalizability in Item Response Modeling

at random from a population of interest, then the transition from scaling model to
scaling and sampling model is conceptually complete. Random effects models with
these sorts of assumptions are commonly used in Bayesian IRT applications.

Beyond the assumption of conditional independence, in a random effects IRT
model assumptions must be invoked to specify prior distributions f (θ ) and g(β) for
the random person and item parameters, θp and β i . Often (and this is the approach we
take in what follows), normal densities are chosen for θp and β i , but others would
be possible. For identification purposes, the first moment of either f (θ ) or g(β) is
constrained to equal 0. Parameter estimation in a random effects IRT proceeds by
defining the likelihood function for the P × I matrix of person by item responses as

L(X | θ, β) =
P∏

p=1

I∏
i=1

P(θp, βi )
X pi [1 − P(θp, βi )]

1−X pi , (17)

where θ and β are vectors of person and item parameters, and X is the observed data
matrix. The joint density function

P(X, θ, β) = L(X | θ, β) f (θ )g(β) (18)

results from combining the “scaling model” defined in Equation (17) with the “sam-
pling model” defined by the prior distributions f (θ ) and g(β). Our interest is in (a)
the posterior distribution of θ for each person, conditional on the difficulty of the test
items in the item population and the observed response vector; and (b) the posterior
distribution of β for each item, conditional on the ability of persons in the target
population and the observed response vector. Namely,

P(θ | β, X) = L(X | θ, β) f (θ )g(β)∫
θ

L(X | θ, β) f (θ )g(β)dθ
, and (19)

P(β | θ, X) = L(X | θ, β) f (θ )g(β)∫
β

L(X | θ, β) f (θ )g(β)dβ
. (20)

The conditional distributions in Equations (19) and (20) can be estimated using
MCMC techniques. It is from these distributions that values are drawn to charac-
terize P(θ p, β i ) for each person-by-item combination in the Rasch model item re-
sponse function. More specifically, P(θ | β, X) and P(β | θ , X) are estimated us-
ing the Metropolis–Hastings algorithm within the Gibbs sampler. Once these poste-
rior distributions for θp and β i have been estimated, we can summarize these dis-
tributions by their mean (e.g., the “expected a posteriori”), median, and standard
deviation.3

In the random effects IRT context, the impact of measurement error can be quan-
tified in a way that is analogous to the CTT concept of reliability by comparing, for
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each person and item, the variance in the posterior distribution to the variance in the
prior distribution, where each variance represents a quantification of posterior and
prior measurement uncertainty. For an instrument that measures person and item pa-
rameters with great precision, these ratios (which will range from 0 to 1), should be
quite small, although once again, as in GT, this will also depend upon the character-
istics of the person and item samples. The smaller the ratio, the more “reliable” the
scores produced by the instrument. We can produce an estimate for the marginal re-
liability (Adams, 2006; Green, Bock, Humphreys, Linn, & Reckase, 1984; Mislevy,
Beaton, Kaplan, & Sheehan, 1992) of person and item parameter estimates by tak-
ing the average of the posterior to prior distribution variance ratios over persons and
items, respectively. We subtract these from 1 to put them on the same scale as a
CTT-based reliability coefficient, hence

Rp = 1 − σ̄ 2
p

var (θ )
, and (21)

Ri = 1 − σ̄ 2
i

var (β)
. (22)

In Equations (21) and (22) the terms σ̄ 2
p and σ̄ 2

i represent the variance in posterior
distributions averaged over persons and items respectively, while the terms var(θ )
and var(β) represent the variance in prior distribution for the population of persons
and items. Note that in IRT models where items are considered fixed effects, the
concept of reliability/generalizability with respect to items is meaningless. However,
in a fully random effects model, the object of measurement can be thought of as
either persons or items, so reliability can be expressed either with respect to per-
sons or items. The same is true, of course, in GT if the object of measurement is
items; generalizability coefficients can be estimated with respect to items instead of
persons.

Relative to GT, there are two limitations to the IRT marginal reliability coefficients
Rp and Ri. First, because they are not expressed in closed form as a function of
sample sizes, we cannot apply Spearman–Brown adjustments as in a GT D Study to
predict how the values will change as person or item sample size changes. Second,
the terms to the right of the equal sign in Equations (21) and (22) will not change,
even when we have a measurement procedure that is multifaceted. This makes it
difficult to disentangle the contribution that distinct facets make to an increase or
decrease in reliability. It would seem then, that there are some useful concepts within
GT, which currently have no clear analog in IRT.

From IRT to GT

An insight that may not be readily apparent is that both the GT model used for a
G Study and IRT models can be conceptualized as instances of multilevel statistical
models (Goldstein, 1995). This is a point that has been made nicely by Verhelst
and Verstralen (2001) and Patz et al. (2002). (For in-depth presentations of just IRT

138



Generalizability in Item Response Modeling

models from a multilevel perspective see Raudenbush & Bryk, 2002, pp. 365–371;
Van den Noortgate & Paek, 2004, pp. 167–187). Given the conceptual similarity
between GT and IRT as multilevel random effects models, it should come as no
surprise that we can derive, given certain assumptions, the variance component and
generalizability coefficient estimates central to GT from within an IRT framework.
In this section we show how this can be accomplished.

The Kolen and Harris Link

A foundation for the link between IRT parameters and GT variance components
was supplied in an unpublished conference article by Kolen and Harris (1987). Kolen
and Harris started with an item response function as in Equation (16) and then defined
the following parameters:

µ =
∫

θ

∫
β

P(θp, βi ) f (β)g(θ )dβdθ, (23)

π (θ ) =
∫

β

P(θp, βi ) f (β)dβ − µ, (24)

ι(β) =
∫

θ

P(θp, βi )g(θ )dθ − µ, and (25)

ν(θ, β) = P(θp, βi ) − π (θ ) − ι(β) − µ. (26)

In comparing the IRT-based parameters represented in Equations (24–26) with the
GT parameters represented in Equations (1–3), we can interpret µ as the mean
person-item response equivalent to the GT grand mean, π (θ ) as the person-specific
mean item response equivalent to the GT person effect ν p, and ι(β) as the item-
specific person response equivalent to the GT item effect ν i . Note that the person-
item interaction effect ν (θ , β) in Equation (26) is not directly comparable to the
residual effect ν pi,e in Equation (4). This is because ν (θ , β) is conceptually distinct
from other unmeasured sources of error in the IRT formulation.

The terms in Equations (24–26) have expectations and covariances of zero. It fol-
lows that,

∫
θ

π (θ )g(θ )dθ =
∫

β

ι(β) f (β)dβ =
∫

θ

ν(θ, β)g(θ )dθ

= ∫
β

ν(θ, β) f (β)dβ =
∫

θ

∫
β

ν(θ, β) f (β)g(θ )dβdθ = 0.

(27)
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The variance components for Equations (24–26) can now be defined as

σ 2(π ) =
∫

θ

π2(θ )g(θ )d(θ ) ; (28)

σ 2(ι) =
∫

β

ι2(β) f (β)d(β); and (29)

σ 2(ν) =
∫

θ

∫
β

ν2(θ, β) f (β)g(θ )dβdθ . (30)

To create an IRT-based analog to the GT linear equation represented by Equation
(4), Kolen and Harris re-wrote Equation (26) as

P(θp, βi ) = µ + π (θ ) + ι(β) + ν(θ, β), (31)

where, as we noted in Section 3, P(θ p, β i ) = E(Xpi). Next, they defined the random
error term epi = e(θ p, β i ) as the error component for a random examinee p of ability
θp responding to a random item i of difficulty β i . So the expected value of an item
response can be translated into the observed score metric directly comparable to
Equation (4) as

X pi = E(X pi ) + epi = µ + π (θ ) + ι(β) + ν(θ, β) + epi . (32)

In parallel with GT, the concept of error is defined as the residual left over when the
observed score is subtracted from the expected score, but in this case the expected
score has been decomposed to include a distinct person-item interaction effect. Of
course, the truth of Equation (32) depends on the truth of the assumptions on which
it is based, including that the item response function specified in Equation (16) holds.
Under the assumption that the observed variable Xpi has a Bernoulli distribution, the
variance of epi will be P(θ p, β i )[1 − P(θ p, β i )]. Taken over all students and all
items,

σ 2(e) =
∫

θ

∫
β

P(θp, βi )
[
1 − P(θp, βi )

]
f (β)g(θ )dβdθ. (33)

This leads to the decomposition of the total variance of observed scores as

σ 2(X pi ) = σ 2(π ) + σ 2(ι) + σ 2(ν)+σ 2(e). (34)

This equation is directly comparable to the GT decomposition of total variance,
where σ 2(π ) , is the equivalent of σ 2( p), σ 2(ι) is the equivalent of σ 2(i), and σ 2(ν) +
σ 2(e) is the equivalent of σ 2 ( pi , e).
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The Expected Response Matrix

A key contribution of this article is to suggest an approach for estimating the
variance components in Equation (34) concurrently with the parameters typical of
the IRT formulation for a p × i design. We begin by pointing out that if the item
response model parameters θp and β i were known for all persons and items, we
could use these parameters to generate an expected response matrix. Such a matrix
would take the form shown in Figure 2.

Given dichotomous items and the Rasch model item response function from
Equation (16), in each cell of the matrix E(Xpi) = P(θ p, β i ). Now, if such an
expected response matrix could be computed, then estimating scalar and vector
values for π (θ ), ι(β), and ν(θ , β) would be straightforward. For example, to
estimate a vector of person effects π̂ (θ ), integration over β could be approxi-
mated by taking the average across the columns β i for each value of θp and
then subtracting the mean person-item response, µ̂, which itself is estimated by
taking the average over all columns and rows of the expected response matrix.
The same approach would be taken to estimate the variance components σ 2(π ),
σ 2(ι), σ 2(ν), and σ 2(e). To arrive at an estimate of σ 2(π ), integration of π (θ )2

over θ is approximated by taking the average of π̂ (θ )2 over the rows θp of the
expected response matrix. That these parameter estimates will be unbiased (i.e.,
BQUE, see Searle et al., 1992) depends upon the assumption that both persons
and items have been sampled in the way that we have specified with our prior
distributions.

In practice θp and β i are unknown and must themselves be estimated. This can
be done by estimating posterior distributions for θp and β i , as in Equations (19)
and (20), using MCMC estimation of a random effects item response model. For
each step m of the Markov Chain, a new estimate of θp and β i is generated:
θ̂ (m)

p and β̂
(m)
i . These estimates are then used to compute the elements of the expected

response matrix, which are in turn used to produce the variance component estimates
σ̂ 2(π )(m), σ̂ 2(ι)(m), σ̂ 2(ν)(m), and σ̂ 2(e)(m). With each new step of the Markov Chain,
a new expected response matrix and set of variance components are estimated. The
process culminates in a posterior distribution for each variance component, where

FIGURE 2. Expected response matrix in GIRM.
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each distribution can be summarized with respect to its central tendency and spread.
It is our hypothesis that the means of these posterior distributions will lead to the
same point estimates as would be produced under GT. The uncertainty of these es-
timates would usually be quantified by the standard deviations of the posterior dis-
tributions. As we discuss later, these standard deviations produced under the GIRM
approach will be likely to be biased downward.

The GIRM Approach with Simulated Data

Comparing GIRM and GT

Of primary interest is in how GIRM estimates of variance components and gen-
eralizability coefficients compare to those that would be produced by analyzing
the simulated data directly using GT.4 As an initial test of the GIRM approach, a
500 by 5 person by item matrix of simulated item responses was replicated 100
times according to the Rasch model with the parameters θp and β i drawn indepen-
dently from standard normal distributions.5 Both GT and GIRM procedures were
applied to these 100 data sets. For each replication, GIRM estimates were pro-
duced from relevant item and person parameter posterior distributions using the
software WinBUGS.6 Posterior distributions were based on MCMC estimation us-
ing three chains with 10,000 iterations after a burn-in of 1,000 iterations. GT es-
timates were computed using standard formulas in the R statistical programming
environment.

Table 1 compares the mean and standard deviation of the 100 posterior distribu-
tion means in each replication of the GIRM approach to the mean of the 100 point
estimates in each replication of the GT approach. When both GIRM and GT are
applied to our simulated data matrix, the results are very similar. The estimated gen-
eralizability coefficient for relative decisions is .474 under the GIRM approach, and
.471 under the GT approach. The estimated generalizability coefficient for absolute
decisions is .439 under the GIRM approach, and .430 under the GT approach. As we
would expect, the generalizability of scores from a test consisting of five dichoto-
mous items is quite low. The relationship between the generalizability coefficients
can be examined graphically in Figures 3 and 4. As is evident from these scatterplots,

TABLE 1
Simulated Variance Component Estimates in GIRM and GT

GIRM Mean GT Mean
Variance Components/G and SD of Posterior and SD of Point Estimate
Coefficients Mean across 100 Reps across 100 Reps

σ̂ 2(p) .033 (.006) .033 (.006)
σ̂ 2(i) .028 (.016) .034 (.020)
σ̂ 2(pi) .002 (.001) NA
σ̂ 2(e) .181 (.014) NA
σ̂ 2(pi, e) .002 + .181 .183 (.013)
E ρ̂2 .474 (.037) .471 (.037)
�̂ .439 (.048) .430 (.052)
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FIGURE 3. Simulated estimates of generalizability for relative
decisions (E ρ̂2).

the indices of E ρ̂2 and �̂ under the GIRM and GT approaches have nearly a perfect
linear association, with correlations of about 1.

One useful feature of the GIRM approach is apparent in the results summarized
above: we are able to estimate separate variance components for the person by item
interaction, σ̂ 2(pi) and for error, σ̂ 2(e). In GT, these components are confounded
within the estimate σ̂ 2(pi, e). The distinction is illustrated below in Figure 5, and is
attributable to the added assumption under GIRM about the distribution of the error
term, epi (i.e., as embodied in the assumption of a particular item response model).

The Uncertainty of Variance Component Estimates

The variance components in both GT and GIRM are estimated with some un-
certainty, and it is desirable to quantify this uncertainty. Many approaches for es-
timating the uncertainty in GT variance component estimates have been proposed,
and this continues to be an active area of research (cf., Betebenner, 1998; Brennan,
2001a, Chapter 6; Gao & Brennan, 2001; Wiley, 2001). In the GIRM approach, pos-
terior distributions are estimated for all variance components and generalizability
coefficients, with the means of these distributions reported as point estimates com-
parable to those produced using the most frequent ANOVA-like procedures in GT.
The uncertainty in posterior distributions is typically summarized using the posterior
standard deviations, and these are provided in Table 2 above. So, for example, when
the GIRM approach was applied to a single simulation of the 500 person by 5 item
data matrix we can put a 95% credibility interval of about ±.07 around the estimated
generalizability (.43) of a five-item instrument for relative decisions.
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FIGURE 4. Simulated estimates of generalizability for absolute
decisions (�̂).

Unfortunately, the standard deviations for posterior distributions of the variance
components and generalizability coefficients in the GIRM approach are very likely
to be biased downward. One cause of this bias has been described in some detail by
Wiley (2001) in the context of bootstrap procedures for the estimation of variance
component standard errors. The problem arises from the fact that across steps of
the Markov Chain, estimates of variance components are not computed indepen-
dently, which leads to a violation of the assumption of random effects. For example,
take the variance component σ̂ 2(i) estimated from the simulated data above. After an
iteration of the Markov Chain, the GIRM approach would use 500 values of θ̂p and
5 values of β̂i to generate an expected response matrix. From this, σ̂ 2(i) is effectively

2 ( )p

GT Variance Components GIRM Variance Components

σ
2 ( , )pi eσ 2 ( )iσ  2 ( )pσ

2 ( )piσ

2 ( )eσ

2 ( )iσ  

FIGURE 5. Differences in variance component decomposition in GT and GIRM.
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TABLE 2
Sensitivity of GIRM Estimates to Normal Distributional Assumptions

Generating Distribution for Item Difficulty

Normal Uniform Beta

GIRM GT GIRM GT GIRM GT

σ̂ 2(p) .029 .029 .030 .030 .036 .036
σ̂ 2(i) .043 .045 .055 .058 .005 .004
σ̂ 2(pi) .002 .003 .000

Normal σ̂ 2(e) .174 .162 .201
σ̂ 2(pi, e) .176 .177 .165 .166 .201 .202
E ρ̂2 .767 .766 .784 .782 .782 .781
�̂ .726 .723 .731 .727 .778 .778

σ̂ 2(p) .044 .045 .037 .037 .053 .054
σ̂ 2(i) .036 .037 .046 .047 .006 .006
σ̂ 2(pi) .003 .003 .001

Generating Uniform σ̂ 2(e) .167 .162 .182
Distribution for σ̂ 2(pi, e) .170 .170 .165 .166 .183 .183
Person Ability E ρ̂2 .839 .840 .818 .818 .854 .854

�̂ .812 .812 .779 .778 .850 .850

σ̂ 2(p) .018 .017 .023 .022 .029 .028
σ̂ 2(i) .035 .036 .042 .043 .007 .006
σ̂ 2(pi) .002 .003 .000

Gamma σ̂ 2(e) .168 .171 .212
σ̂ 2(pi, e) .170 .172 .174 .175 .212 .214
E ρ̂2 .672 .665 .721 .714 .728 .724
�̂ .630 .621 .676 .667 .722 .719

Note: GIRM estimates based on specification of normal prior distributions for person and item difficulty
parameters.

computed by averaging across the rows of the expected response matrix. To quantify
the variability in σ̂ 2(i) we would want to allow the columns of the expected response
matrix to vary while holding the rows constant, when in fact, for each iteration of the
Markov Chain both columns and rows vary together. The problem described above
applies equally to the GT approach, but will typically be less visible because GT,
as implemented using the software GENOVA, provides estimates for standard errors
using a closed-form formula under the assumption that score effects are normally
distributed.

One clever approach that would at least partially adjust for the underestimation
of posterior uncertainty was proposed by an anonymous reviewer of this article. In
this approach, instead of estimating variance components by applying GT to the
matrix of expected responses at each step of the MCMC chain, one would use
the IRT parameters at each step of the chain to simulate a new matrix of item re-
sponses, and then apply GT to this predictively simulated matrix. In other words,
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for the GIRM approach described here, GT is applied to E[Xpi|θ (m)
p , β

(m)
i ]. In the

xsalternative approach, GT would be applied to X (m)
pi ∼ Rasch(θ p, β i ). So in this

case the difference between GT and GIRM would be that the former operates on the
observed Xpi, while the latter operates on the posterior predictive X (m)

pi . Implementing
this and other potential adjustments to the way that uncertainty is quantified in the
GIRM approach is outside the scope of this current article, but clearly such adjust-
ments would be possible, and this is something we plan to explore in a subsequent
study.

We make no claims at this point that adjustments to the estimation of standard
errors within the GIRM approach necessarily provide any clear advantage relative
to other approaches being taken. We also note that the appealing feature of obtain-
ing posterior distributions for variance components is not unique to GIRM, but a
feature of taking a Bayesian estimation approach using MCMC methods. An ap-
plication of MCMC methods to the estimation of GT variance components on the
basis of observed scores has previously been presented by Mao, Shin, and Brennan
(2005).

Sensitivity of GIRM Results to Distributional Assumptions

The comparisons above between the GIRM and GT approaches were based on
an ideal scenario in which the distributions of the θp and β i parameters governing
the item response simulation matched the specification of prior distributions for the
GIRM item response function. To test the sensitivity of the GIRM approach to the
specification of prior distributions, we now hold fixed the prior specifications of the
GIRM approach while varying the θp and β i distributions from which item parame-
ters were initially generated. The fixed and varying conditions of the simulations are
as follows:

FIXED CONDITIONS

1. 500 respondents.
2. 20 items.7

3. One parameter item response function.
4. Prior distributions drawn from standard normal distribution.

VARYING CONDITIONS

1. Distribution from which β i is drawn before simulating item responses.
a. Normal (0, 1) [same as that assumed by GIRM]
b. Uniform (−2, 2)
c. Beta (.5, .5)

2. Distribution from which θp is drawn before simulating item responses.
a. Normal (0, 1) [same as that assumed by GIRM]
b. Uniform (−2, 2)
c. Gamma (1)

We consider three distributional conditions, respectively, for β i and θp. This leads
to the simulation of nine different 500 by 20 matrices of item responses, to which we
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apply both the GIRM and GT approaches. Table 2 compares the resulting variance
component and generalizability coefficient estimates.

The comparison in the upper left corner of Table 2 represents the case where the
distributional assumptions of the GIRM approach match the way item responses
were actually generated. The GIRM and GT results are virtually identical. The three
comparisons in the middle to upper left portions of Table 2 (normal/uniform, uni-
form/normal, and uniform/uniform) are all examples where we might expect the
misspecification of GIRM prior distributions to be fairly mild, as the normal dis-
tribution might not be a bad approximation for a uniform distribution. Here we again
find no noticeable difference in the results produced under either the GIRM or GT
approaches. Of greatest interest are the comparisons in Table 2 under the beta col-
umn and the gamma row, as these skewed distributions can be expected to be poorly
approximated by a normal distribution. However, as the results indicate, the esti-
mated variance component and generalizability coefficients remain consistent with
those that are estimated under GT. While the misspecification of prior distributions
as normal does affect the ability of the GIRM approach to correctly estimate param-
eters for β i and θp (results not shown here), it does not seem to have an effect on the
ability to the GIRM approach to produce estimates consistent with those produced
by GT for variance components and generalizability coefficients.

Sensitivity of GIRM Results to Specification of Item Response Function

In the simulations above, there has been a perfect match between the item response
function used to simulate item responses and the item response function used to esti-
mate parameters under the GIRM approach. In both cases, a Rasch model was used.
To test the sensitivity of mis-specifying the item response function in GIRM, we sim-
ulated data according to a 3PL model, and then applied the GIRM approach using
the Rasch model and normal prior distributions for both item and person parameters.
In simulating a 20 by 500 matrix of item response according to the 3PL model, dis-
crimination parameters were sampled from a normal distribution with a mean of .9
and an SD of .2, location parameters were sampled from a normal distribution with
mean of 0 and an SD of 1, and guessing parameters were fixed at .25.

The results from this simulation (not shown here) provide preliminary evidence
that, at least in the context of this simple p × i design, the GIRM-based estimates
of variance components appear to be robust to misspecification of the underlying
item response function. Consistent with the findings from our previous simulations,
when applied to data simulated using the 3PL model, both GIRM and GT produced
virtually identical variance component and generalizability coefficient estimates.

The GIRM Approach with Empirical Data

We now present the GIRM approach in the context of an empirical data set with
a p × i measurement design. The data are taken from a survey instrument known
as the Colorado Learning Attitudes about Science Survey (CLASS), which was ad-
ministered to 349 undergraduate students enrolled in an introductory physics course
at the University of Colorado. The intent of the CLASS instrument is to measure
student beliefs about learning physics. In taking the CLASS, students are given 36
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items in the form of statements such as “A significant problem in learning physics
is being able to memorize all the information I need to know.” Students select re-
sponses to these items along a five-category Likert scale from strongly disagree to
strongly agree. These responses are subsequently scored dichotomously according to
whether the response is in the same direction as that which would be expected from
a practicing physicist (i.e., an “expert”). For details on the design and development
of the CLASS, see Adams, Perkins, Dubson, Finkelstein, and Wieman (2005).

Both GT and the GIRM approach were applied to the CLASS data. Consistent
with the GIRM approach taken in our simulations, we specified a Rasch item re-
sponse model with standard normal item and person parameter distributions, and
MCMC estimation with a burn-in of 1,000 and a chain of length of 10,000. There
were 50 observations (less than 1%) in the 349 × 36 data matrix that were miss-
ing. This had no impact on the GIRM approach, as variance component estimation
is based upon the expected, rather than the observed response matrix. The presence
of missing data did require some adjustment to the GT approach; namely, an un-
balanced random effects design had to be specified, with the software urGENOVA
(Brennan, 2001b) used in place of GENOVA (for details see Brennan, 2001a, pp.
215–247).

The results from the GIRM and traditional GT analysis are presented in
Table 3 and Figure 6. The results shown in Table 3 are expressed in the language
of GT, and include the variance components and generalizability coefficients associ-
ated with the CLASS instrument. Consistent with the results from our simulations,
when the observed responses from the CLASS data were analyzed using traditional
GT, the estimated variance components were virtually identical. The results shown
in Figure 6 are expressed in the language of IRT, and constitute what Wilson (2005)
calls a “Wright Map,” with estimates of student ability and item difficulty placed
on a common logit scale. The Wright Map provides a graphical presentation of
the probabilistic relationship between the location of student beliefs along a latent
continuum relative to the location (i.e., difficulty) of the items to which they have
responded.

Here are some statements about the CLASS instrument that can be made based on
the GT results from Table 3:

• When total variance for a single person by item score combination Xpi is de-
composed into person, item, person by item, and random error components, we
see that the largest proportion of this variability, 77%, can be attributed to the
residual term. About 10% of total variability can be attributed to item variability.
The proportion of variability attributable to person by item interactions (.4%)
appears to be negligible. Note that this result would not otherwise be obtained
as part of an IRT analysis.

• If student mean scores for the CLASS instrument are computed from the 36
items analyzed here, the respective generalizability coefficients for relative and
absolute decisions based on these observed scores are .85 and .83. This sug-
gests that these scores have fairly high generalizability over the full universe
of items that could have been used for the instrument. On the other hand, if
the instrument designers were to use only half as many items for their survey
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FIGURE 6. A Wright map for the CLASS data.

(perhaps because of time constraints), then these generalizability coefficients
would decrease to .74 and .71.

Here are some statements about the CLASS instrument that can be made based on
the IRT results from Figure 6:
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TABLE 3
Variance Component Estimates in GIRM and GT for CLASS Instrument

Variance Components/G GIRM Mean of Posterior GT Point
Coefficients Distribution Estimate

σ̂ 2(p) .030 .031
σ̂ 2(i) .025 .025
σ̂ 2(pi) .001 NA
σ̂ 2(e) .190 NA
σ̂ 2(pi, e) .001 + .190 .192
E ρ̂2 .851 ∗
�̂ .834 ∗
∗Estimates for these terms are not available as part of urGENOVA, but are otherwise derivable (cf.,
Brennan, 2001a, pp. 227–240).

• It is relatively easy for students taking the CLASS to agree with the expert belief
about learning physics on the majority of the survey items. That is, 25 out of
36 are closely clustered together with item difficulties between 0 and −1 logits.
On the other hand, there are three items (6, 9, and 31) that are clearly quite hard
for students to agree with, and three items (23, 7, and 26) that are clearly quite
easy to agree with. An important question to ask would be whether this result
had been hypothesized by the designers of the CLASS instrument.

• A large part of the distribution of student attitudes is between 0 and 2 logits, yet
there are relatively few items located in this range. Consequently, the beliefs for
students in this part of the distribution will be measured less precisely than for
students between 0 and −1 logits.

In this empirical example, two more features of the GIRM approach come into
clearer focus. First, the approach does not require any sort of reformulation in the
presence of missing data. While GT can handle designs with missing data, changes
in the underlying model used to estimate the relevant G and D Study variance com-
ponents can become increasingly complex. Second, the GIRM approach provides an
analyst with estimates for both GT and IRT parameters. This enables the analyst to
interpret a measurement procedure both in terms of the sampling component typi-
cally associated with GT, and the scaling component typically associated with IRT.

It is worth noting that in this particular example, where only a single rather than a
multifacet design was specified, some of the unique information available through a
GT analysis may not be as evident. GT is particularly useful when one is speculating
about the optimal design for a measurement procedure in terms of the quantity of
facet conditions. IRT results can be quite complementary from the standpoint of
making decisions about optimal measurement design. IRT may not readily commu-
nicate the same sort of information about the optimal quantity of facet conditions, but
it can be used to provide useful information about the quality of the facet conditions.

Discussion

Our aim in this article has been to introduce the GIRM approach as what we
hope will be a further step toward building a crosswalk between IRT and GT. We
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have shown that this approach, situated within an item response modeling framework
and the context of a simple measurement design, will lead to the same estimates
of variance components and generalizability as would be reached under the more
traditional GT approach. We have provided some evidence that the approach appears
to be robust to misspecification of distributional assumptions and the form of the
item response function.

We have pointed out three advantages to the GIRM approach:

1. Although there is no model-independent decomposition of pi and e, conditional
on assumptions about the distribution of the error term, variance components
for error and facet interaction effects can be estimated separately.

2. Because estimation of variance components under the GIRM approach is done
as a function of expected rather than observed responses, all measurement de-
signs can be treated as if they were complete and balanced.

3. The results from both a GT and IRT analysis are available within a single mod-
eling framework.

It may well be that it is the last of these advantages that is the most practically
important. We can at this point only speculate about one other potential advan-
tage of the GIRM approach that merits further exploration. A wide variety of mea-
surement designs can be easily incorporated into item response functions in the
GIRM approach, and we suspect that many of these designs cannot be so easily
expressed in GT notation. For example, it does not appear that standard GT no-
tation and variance component estimation can accommodate a design in which a
group of raters score both a common set of items along with a unique set specific
to each rater. But this is something that can be set up relatively easily using IRT
(cf. Wilson & Hoskens, 2001). If our suspicions are correct, then there will be a
class of measurement designs for which GIRM can provide answers that would elude
GT (although, of course, advances in GT may render such judgments untrue in the
future).

This is, of course, the critical question we have yet to address: when would one
expect the GIRM approach to give results that differ from those that could be read-
ily obtained through the application of traditional GT? The integration of IRT and
GT that we have proposed here mainly addresses the estimation of G Study variance
components for a single-facet design. Many other GT topics such as multifacet and
multivariate designs have not been addressed in detail. Hence, a next step would be
to extend and compare the GIRM approach in the context of more complex mea-
surement designs, in particular to designs where the use of GT may not be workable.
These designs are likely to be multifaceted and unbalanced with polytomous item re-
sponses. Indeed, previous research by Verhelst and Verstralen (2001) and Patz et al.
(2002) in the context of repeated ratings on performance assessments has led to a
number of useful insights with respect to the connections between IRT, GT, and the
broader framework of hierarchical random effects models, insights we have built
upon in this article.

The GIRM approach comes with clear limitations, some of which we have alluded
to throughout this article. A technical limitation of the GIRM approach is the lack
of specialized software. The software WinBUGS 1.4 was used to estimate posterior
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distributions for GT parameters. While writing WinBUGS code is fairly straightfor-
ward for a simple item response function and dichotomous data, it can become more
difficult when using more complex item response models and polytomous data. In
addition, running the GIRM approach through WinBUGS can be time-consuming.
Estimating posterior distributions for variance components for a 500 person by 20
item matrix took approximately four hours using a standard desktop computer.8 All
this should come as little surprise, since the WinBUGS software is relatively new, and
was not designed with IRT or GT extensions in mind. As WinBUGS becomes more
developed, and/or as specialized MCMC estimation routines are written in flexible
programs such as R, there should be fewer technical limitations to the implementa-
tion of the GIRM approach. Another limitation we have discussed is that the vari-
ance component posterior distributions produced in the GIRM approach as currently
implemented using WinBUGS will be biased, tending to underestimate spread in the
distributions. Finally, the GIRM approach requires a stronger set of assumptions than
those required for GT.

From a theoretical standpoint, the assumptions of GIRM are not for the faint of
heart. GIRM shares with GT the assumption that persons and facets of measurement
are sampled independently from populations of persons and facets. The justifications
offered for such assumptions made in applied contexts are often not very compelling,
if they are offered at all. For instance, in the example with the CLASS instrument
presented above, the IRT results in Figure 6 indicated that were the instrument to
be revised it might be sensible to include more difficult items so as to obtain more
precise estimates for respondents with more positive beliefs about physics. But if the
items for the revised instrument were selected in this way, they would clearly not
represent a random (or exchangeable) sample from the universe of possible items,
however loosely the latter is conceptualized. It should be clear from this example
that there are instances when random sampling assumptions are not appropriate, and
where the notion of generalizability, at least as it is conceptualized in GT, is not
compatible with IRT. But this is a topic for another article.

One justification for the potentially dubious sampling assumptions in GIRM (and
these include the assumptions common to GT), is that these assumptions are no worse
than the sorts of assumptions in classical test theory or other inferential statistical
models (Brennan, 2001a, pp. 171–174). Unfortunately, such justifications do little to
reassure us that the GIRM and GT approaches are robust to violations of their various
independence assumptions. Research that explores this issue would go a long way
toward determining whether the GIRM approach presented here is a sensible model
in applied contexts.

In addition to the sampling assumptions of GT, GIRM adds the standard assump-
tions of IRT, and distributional assumptions about measurement facets. The simu-
lations described in this article suggest that with respect to the estimation of GT
variance components, the GIRM approach is robust to the misspecification of prior
distributions and the parametric form of the item response function. Future research
should continue to rigorously examine these findings, and also explore the sensitivity
of the GIRM approach to other sorts of misspecifications, such as violations of the
assumptions of unidimensionality and local independence.
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Notes
1This assumption is made to simplify the comparison with the GIRM approach that follows.

Both GT and GIRM can also be applied to unbalanced designs.
2Brennan (2001a, p. 24) points out that, for the product of most score effects, this “assump-

tion” is really just a consequence of how score effects have been defined as random effects in
the model.

3A detailed explication of this approach is beyond the scope of this article. For details on
Bayesian analytical methods and MCMC estimation, see Gelman et al. (2004); for details on
the use of Metropolis Hastings within Gibbs for IRT models, see Patz & Junker (1999).

4GT can be relatively easily implemented using the software GENOVA (Crick & Brennan,
1983).

5Our initial simulation only included five items to accomodate the computer processing
demands of 100 replications of the GIRM approach.

6The GIRM approach is implemented using the software WinBUGS (Spiegelhalter et al.,
2004) invoked out of the R programming environment with the function “bugs” and the pack-
age R2WinBUGS (Sturtz, Ligges, & Gelman, 2005). The relevant code is available from the
first author upon request.

7We use 20 items instead of five to address a criticism raised by one reviewer of this article
who suggested that the application of either GIRM or GT to a measurement design with only
5 items was unrealistic.

8The desktop computer used was a PC Pentium 4, 3 GHz CPU, 1 GB RAM.
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