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Abstract 

When a test is consisted of multiple unidimensional scales, such as subscales, the composite of 

the entire test items is not likely meet the essentially tau-equivalent condition. Therefore, 

Coefficient-alpha, a widely used reliability estimator, likely underestimates the true reliability at 

large degree. This paper examined three alternative methods (Stratified-alpha, Maximal 

Reliability, and Multidimensional omega) to estimate the reliability under five different 

multidimensional factor-structure conditions.  The result revealed that the three alternative 

methods estimated the true reliability much better than Coefficient-alpha did in all conditions. It 

also appeared that Stratified-alpha generally performed the best. Comparisons between the three 

alternative methods are discussed in detail. 
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Estimating Reliability for  

Multidimensional Composite Scale Scores 

Scale reliability is of interest to many researchers who develop or utilize psychological 

and educational measurement. To date a number of methods have been proposed to estimate the 

reliability of composite scores based on a single administration of a test. Among them, 

Coefficient-alpha (Guttman, 1945; Cronbach, 1951) is probably the most frequently reported 

reliability estimate in educational and psychological literature. It is a well-known fact that the 

essentially tau-equivalent condition is required for Coefficient-alpha to be an unbiased estimator 

of the reliability (Lord & Novic, 1968). By definition, the essentially tau-equivalent condition 

requires that the true scores for any two components in the test have to be different only by a 

constant (Lord & Novic, 1968). Operationally, the essentially tau-equivalent condition requires 

equal discriminating power for all components in the test, as well as the unidimensionality of the 

test, which is represented by equal factor loadings for all components under the one-factor factor 

analytic model (McDonald, 1999).  If the essentially tau-equivalent condition is not satisfied, 

Coefficient-alpha is a lower bound of reliability; that is, it underestimates the true reliability to 

some extent.  

In practice it is almost impossible to achieve the tau-equivalent assumption perfectly, in 

terms of both equal discrimination power for all test components and unidimensionality of the 

test. When the essentially tau-equivalent condition is not satisfied only because of unequal 

discrimination power of test components (i.e., the unidimensionality of the test is satisfied), the 

test is identified as a congeneric test. Underestimation of the true reliability because of unequal 

discriminations is rather optimistic, as far as unidimensionality of the test is secured, because 

there are some attempts to estimate reliability in such a case and have been shown to be quite 
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effective (e.g., Jöreskog, 1971; McDonald, 1970, 1999). However, underestimation of the true 

reliability may become serious when the test is not unidimensional (e.g., Cortina, 1993; Schmitt, 

1996; Osburn, 1999). This would be a concern when one is interested in estimating the reliability 

of multidimensional scale scores. For example, one might have a multidimensional scale to 

measure the self-efficacy for collegiate athletes (Czerniack, 2002), where the scale is composed 

of three dimensions of the self-efficacy (athletic, academic, and social life). In this example, one 

might be interested in measuring the overall self-efficacy as a summation of the scores from all 

three dimensions, as well as in measuring the self-efficacy for three dimensions separately. It is 

clear that Coefficient α for the total scale scores will underestimate the true reliability, because 

of the multidimensionality nature of the scale. Another example is the total GRE scores as an 

admission criterion for a graduate school. The problem extended to approaches where one 

corrects a validity coefficient for attenuation due to unreliability, or intends to estimate the 

standard error of measurement (Schmitt, 1996; Rogers et al., 2002). 

Recent studies points out that with pre-specified set of items that do not assess the same 

underlying dimensions, popular methods, such as Coefficient-alpha, may lead to biased 

reliability estimates (Zimmerman et al., 1993; Komaroff, 1997; Murphy & DeShon, 2000; 

Osbourn, 2000; Raykov, 1998; 2001). Particularly, Osbourn (2000) demonstrates that when the 

scale was multidimensional, most of the reliability coefficients, including Coefficient-alpha, 

Standardized alpha, and Feldt’s coefficient, underestimated the true reliability of the scale. 

Exceptions were Stratified-alpha and Maximal Reliability that provided consistent and accurate 

reliability estimates. This paper, therefore, investigates the effect of multidimensionality of a 

scale on Coefficient-alpha, as well as some procedures that may be suitable to estimate reliability 

under multidimensional conditions, such as Stratified-alpha (Cronbach, Shonenman, & McKie, 
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1965), and Maximal Reliability (Li, Rosenthal, & Rubin, 1996). This paper also examine the 

multidimensional extension of McDonald’s omega (McDonald, 1970, 1999). 

Stratified-alpha 

Stratified-alpha was proposed by Cronbach, Shonenman, and McKie (1965). It is 

intended for cases where components of a test can be grouped into subtests on the basis of 

content. It assumes k components, where ith component (i = 1, …. , k) consisted of ni 

components. Stratified a is obtained by 
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2 is the variance of the test. Stratified α may be suitable for estimating reliability for 

multidimensional composite scores.  

Maximal Reliability 

Maximal Reliability was derived by Li, Resenthal, and Rubin (1996). It extends the 

Spearman-Brown formula (Lord & Novick, 1968) to k components, where ith component (i = 1, 

…. , k) consisted of ni parallel components. Operationally, it assumes that a test can be divided 

into k subtests, where all items within a subtest are parallel. In other words, it assumes that all 

items within a subtest have the same reliability and the same variances. Maximal Reliability R*
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where ri is the item reliability of the ith subtest, ρ is the common correlation between traits. 

Maximal Reliability should be suitable for estimating reliability for multidimensional composite 

scores when items within subtests are parallel. However, if items within subtests are not parallel, 

underestimation of reliability is expected.   

Omega 

McDonald (1970, 1999) proposed the estimate of the reliability for a composite score 

from a congeneric a test. McDonald defines omega (ω) as the ratio of modeled variance to the 

total variance in the one-factor factor analytic model. In the one-factor factor model 

 j j jX F E= λ + ,  (1) 

where Xj is a random score on the jth item (j = 1, …. , k), F is the factor score (i.e., examinee’s 

ability) Ej is the uniqueness (i.e., error), and λj is the factor loading for item j. Then, assuming 

the variance of F is fixed to be 1, the modeled variance for the composite score of k items (σ2
C) 

is 
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Even though ω does not assume the essentially tau-equivalent condition, it still assumes a 

congeneric assumption, in which components are measuring one latent trait. Therefore, ω itself is 

not suitable for estimating reliability when the test is multidimensional. 

 Multidimensional Extension of ω 

McDonald’s ω is extended to cases with a multi-factor factor analytic model. For n 

variables and p dimensions, the factor model can be written as 

 ′= +X FΛ E , (5) 

where X is a k × n matrix of observed scores on n variables and k examinees, F is a k × p matrix 

of factor scores on p factors, Λ is an n × p matrix of factor loadings, Λ′ is a transpose of Λ, and E 

is an n × k matrix of error scores.  Here, the reliability is still conceptualized as the ratio of the 

modeled variance to the total variance, which is consistent with the definition of reliability for 

the unidimensional ω. Now, the covariance matrix of X, cov(X), is  

 
( ) ( ) ( )

,
cov cov cov′= +

′= +ΛΦΛ Ψ
X Λ F Λ E

 (6) 

where Φ ≡ cov(F), and Ψ ≡ cov(E).  Assuming that the variances in F are constrained to be 1, Φ 

is the correlation matrix for p factors.  Therefore, the modeled variance for the p-dimensional 

composite score (
1

n

j
j

X
=

∑ ) with n variables is the sum of all elements in ΛΦΛ′, and it is expressed 

as 

 2
C n n′ ′σ = ΛΦΛ1 1 , (7) 

 where 1n is an n × 1 column vector with all elements are 1. On the other hand, the total variance 

is still expresses in the same way as for the unidimensional case in (3), which is the sum of all 

elements in the data matrix S.  As a result, Multidimensional-omega (MD-omega) is obtained by 
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 MD
n n

n n

′ ′
ω =

′
1 1

1 S1
ΛΦΛ . (8) 

Since the numerator in (8) can be reduced to the numerator of (4) with Λ = λ and Φ = 1, we can 

confirm that ω is a special case of ωMD when p = 1.  

Simulation Methods 

Reliability estimation methods, including Coefficient-alpha, Stratified-alpha, Maximal 

reliability, and MD-omega, were evaluated through simulations. In order to generate data, the 

reliability values for the 10 components and covariance matrix of the true scores for the 10 

components were predetermined. Based on the reliabilities and the true-score covariance matrix, 

the observed-score covariance matrix Var(X) was obtained by Var(X) = ρ-1Var(T), where ρ-1 is 

the inverse of 10 × 10 matrix with the reliability of the ith component is the ith diagonal element 

in the matrix (i = 1, … , 10), and Var(T) is the covariance matrix of the true scores. Then, the 

observed scores for the 10 components were randomly generated from the multivariate normal 

distribution with 0 means and with the derived observed-score covariance matrix. 

A two-factor structure with 5 components per factor was assumed to generate data, and 5 

different factor-structure conditions were investigated. The reliabilities for 10 components were 

the same for all 5 factor-structure conditions, except in 2 conditions where one of the component 

reliability was altered (see descriptions of the 5 conditions below). The reliabilities for the 10 

components were .42, .45, .47, .50, .53, .43, .46, .49, 52, and .55 for components 1 through 10. 

On the other hand, the structure of the covariance matrix for the true scores was altered for the 5 

factor-structure conditions. Also, the diagonals in the true-score covariance matrix were fixed to 

1. In other words, the variances of the true scores for 10 components were all 1. True-score 

covariances between 10 components that were in the same dimension were all 1 (perfect 
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correlations). On the other hand, true-score covariances between components that were in 

different dimensions were all one of .8, .5, or .3, depending on the correlation between the two 

factors. 

The first condition was the perfect simple-structure, where the first 5 components were 

loaded onto one factor, and the other 5 components were loaded onto another factor.  The second 

condition was the same as the first condition, except that one of the components had 

considerably lower reliability (i.e., large measurement error) than the other components. 

Specifically, the reliability of the ninth component was .25, instead of .52, while reliabilities for 

the other components were the same as in the first condition. In the third condition, the factor 

structure to generate the data was exactly the same as the first condition. However, one 

component was miss-placed in the wrong dimension when the reliability was estimated by the 

four estimation methods. Specifically, the fourth component in the first factor was misplaced in 

the second factor. The fourth condition was the same as the third condition, except that the 

misplaced component had considerably lower reliability than the other components. The 

reliability of the fourth component was .25 instead of .50.  The fifth condition had a complex 

structure, where the first component loaded on both factors. When reliability was estimated, this 

complex structure was ignored. 

In addition to the 5 factor-structure conditions, two additional simulation factors were 

considered. The true correlation between the two factors was varied among .30, .50, and .80, and 

the sample size was varied among 50, 200, 500, 1000, and 2000.  As a result, 5 factor-structures 

× 5 sample sizes × 3 correlations = 75 simulation conditions were examined, and each simulation 

condition was replicated 200 times. For each of the 75 simulation conditions, we evaluated the 

true reliability, Coefficient-alpha, Stratified-alpha, Maximal reliability, and MD-omega for the 
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composite of the 10 components. Coefficient-alpha, Stratified-alpha, and Maximal reliability 

were computed based on the formulas from original literatures, while equation 8 was used for 

MD-omega.  

Simulation Results 

Overall, we found that Coefficient-alpha largely underestimated the true reliability. This 

is consistent with previous literature (e.g., Cortina, 1993; Schmitt, 1996; Osburn, 1999). This 

underestimation was more prominent when the correlation between dimensions was lower (see 

Figures). Also, Coefficient-alpha underestimated the true reliability more when the sample size 

was the smallest at n = 50; however, the difference from other sample size conditions was very 

small. This tendency was consistent across all 5 factor-structure conditions. Therefore, it is not 

appropriate to use Coefficient-alpha as an estimate of the reliability of a multidimensional 

composite scale score, unless the correlation between dimensions is high.  

On the other hand, the three alternative methods (MD-omega, Stratified-alpha, and 

Maximal Reliability) estimated the true reliability much better than Coefficient-alpha in all 

simulation conditions. Therefore, these three methods were compared in details for each of the 5 

factor-structure conditions. The root mean square error (RMSE), bias, and standard error were 

evaluated for each simulation condition. 

In the first factor-structure condition, where a perfect simple-structure was assumed, the 

difference between the three methods was almost negligible. The bias was almost identical for 

the three methods, except in the n = 2000 condition, where MD-omega had larger bias than the 

other two. However, the difference was only at the third decimal place. The standard error was 

almost identical for the three methods in all simulation conditions. When RMSE were examined, 

the effect of the sample size was noticeable for a small sample size (n = 50), but the difference 
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from a larger sample size (n = 200) was between .01 and .02. On the other hand, the difference 

between n = 200 and the largest sample size (n = 2000) was less than .01 in all 3 correlation 

conditions. The effect of the correlation between factors was very small, and the effect became 

smaller as sample size became larger.  

In the second factor-structure condition, where one component had significantly lower 

reliability than the other components in the test, MD-omega tended to overestimate the true 

reliability. The magnitude of the overestimation was between approximately.004 and .010. 

Maximal Reliability also had a tendency of overestimation of the true reliability, but the 

magnitude of the overestimation was relatively small (.003 maximum). On the other hand, 

Stratified-alpha had very small bias in all conditions. The standard errors were smallest for the 

MD-omega in all conditions, although the differences were small (.0003 to .0035, mainly 

depending on the sample size). Assessment of RMSE revealed the existence of a method × 

sample size interaction. RMSE tended to be smaller when sample size increased. However, this 

tendency was weaker for MD-omega, while the tendency and the magnitudes of RMSE were 

almost identical for Stratified-alpha and Maximal Reliability, in all 3 correlation conditions.  

In the third factor-structure condition, where one component was miss-specified, all three 

methods underestimated the true reliability. The magnitude of underestimation was larger when 

the correlation between factors was smaller. Also, the difference between the three methods was 

larger with smaller correlation, although the difference was negligible with r = 0.5 and r = 0.8 

conditions. The standard error was always largest for Maximal Reliability, but the difference 

from the smallest standard error was very small (0.009 to 0.0001) When RMSE were examined, 

the interaction effect of method × correlation was observed. The three methods estimated the true 

reliability equally well when the correlation between factors was the highest (r = 0.8). However, 
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when r = 0.5, Maximal Reliability’s performance was worse than the performance of the other 

two methods, although the difference was very small. When r = 0.3, the performance of 

Stratified-alpha was clearly better than the performance of the other two. However, the effect of 

method was consistent across difference sample sizes.  

In the fourth factor-structure condition, where one component was miss-specified and had 

much lower reliability than the other components in the test, Stratified-alpha and Maximal 

Reliability tended to approach the true reliability as the correlation between traits became larger. 

On the other hand, MD-omega tended to overestimate the true reliability when the correlation 

was the highest (r = 0.8). However, it underestimated the true reliability, and the magnitude of 

underestimation was smaller than the other two methods when r = 0.3 and r = 0.5.  The standard 

error was always smallest for MD-omega, but the difference from the largest standard error was 

small (0.0004 to 0.007). When RMSE was examined an interaction effect of method × 

correlation was observed. The three methods estimated the true reliability equally well when the 

correlation between factors was the highest (r = 0.8). However, when r = 0.5, MD-omega 

performed better than the other two methods, while the performance of Stratified-alpha and 

Maximal Reliability were very similar. When r = 0.3, MD-omega still performed better than the 

other two methods, while Stratified-alpha’s performance was clearly better than the performance 

of Maximal Reliability. The effect of methods was consistent across different sample size, except 

in the condition of r = 0.8 where the effect of sample size was slightly smaller for MD-omega 

than the other two methods. This was due to MD-omega’s tendency to overestimate the true 

reliability with larger sample sizes (n ≥ 200) in the r = 0.8 conditions. Overall, MD-omega 

performs the best among the three methods. However, one has to realize the fact that MD-omega 

may overestimate the true reliability. 
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In the last factor-structure condition, where one component loaded on two traits, MD-

omega tended to overestimate the true reliability, while maximal reliability tended to 

underestimate the true reliability. This tendency was more prominent when the correlation 

between traits was smaller. On the other hand, the bias for Stratified-alpha was almost zero in all 

correlation conditions, except when the sample size was small (n = 50). The standard error was 

always smallest for MD-omega, although the difference between the three methods was very 

small (.0002 to 0.0075). When RMSEs are examined, there is a method × correlation interaction, 

as well as a method × sample size interaction. The performance of the three methods were 

similar when r = 0.8, while the difference was larger at r = 0.5 and r = 0.3. Also, the effect of 

sample size was stronger for Stratified-alpha than MD-omega, especially in r = 0.3 conditions.  

Conclusions 

Generally, any of the three alternative methods can be recommended when the scale is 

not unidimensional. In fact, all three alternative methods estimated the true reliability very well 

under the perfect simple structure condition. Also, the magnitudes of the standard errors were 

very small, although MD-omega always had the smallest standard errors. 

Stratified-alpha estimated the true reliability with almost no bias also in the factor-

structure condition 2, where one of the components had significantly lower reliability than the 

other components, and the factor-structure condition 5, where a complex structure was ignored. 

On the other hand, Stratified-alpha tended to underestimate the true reliability in the factor-

structure condition 3, where one component was miss-specified in the wrong dimension, and in 

the factor-structure condition 4, where one component had a lower reliability than the other 

component and was miss-specified. However, the magnitude of the underestimation was smaller 

than the other two methods and became smaller as the correlation between the dimensions 
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became larger. On the other hand, the magnitude of the underestimation was not as small as MD-

omega but became smaller as the correlation between the dimensions became larger. In 

conclusion, Stratified-alpha estimated the true reliability with almost no bias as far as the test 

components were specified to appropriate dimensions.  

Maximal Reliability estimated the true reliability with almost no bias in the factor-

structure condition 2, where one component had a low reliability. However, it underestimated the 

true reliability in the factor-structure condition 3, where one component was miss-specified, 

factor-structure condition 4, where one component had a lower reliability and was miss-specified, 

and factor-structure condition 5, where complex structure was ignored. However, the magnitude 

of the underestimation was very small when the correlation between the dimensions was the 

highest. In conclusion, Maximal Reliability estimated the true reliability with almost no bias as 

far as the test components were specified in simple structure. 

MD-omega estimated the true reliability with almost no bias in the factor-structure 

condition 4, where one component had a lower reliability and was miss-specified. In fact, this is 

the condition that the other two alternative methods did not do as well as MD-omega. Therefore, 

this is the condition that MD-omega has its strength. However, in practice, it is almost 

impossible to detect a miss-specification. (If it is known, we will certainly try to correct the miss-

specification!)  On the other hand, MD-omega had tendency of overestimation and 

underestimation depending on factor-structure conditions. In factor-structure condition 2, where 

one component had low reliability, MD-omega had a tendency to overestimate the true reliability, 

while it had a tendency to underestimate the true reliability in factor-structure conditions 3 and 5. 

However, like the other two alternative methods, the magnitude of the bias was very small when 
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the correlation between the dimensions was the highest. Overall, MD-omega provides a good 

estimate of true reliability, but one has to be aware that it may overestimate the true reliability. 

In summary Stratified-alpha appeared to be the most “reliable” procedure among the 

three alternative methods we investigated, although the other two methods may outperform 

stratified alpha depending on the condition. However, the difference between the three methods 

was very small. Also, this study revealed that the reliability could be overestimated by alternative 

methods, especially by MD-omega, which can result in a larger error. Therefore, it is not 

recommended to take an approach to estimate reliability by multiple methods and use the highest 

value as the best estimate. 

Although we investigated five different factor-structure conditions, the performance 

difference between the three methods was rather subtle. We will further investigate the 

characteristics of these three reliability estimates to make more specific recommendations, 

including the number of items and the number of dimensions. 
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Table 1.  

Simulation Results for Perfect Simple Structure – Factor Structure 1 

Conditions  Coefficient 
α 

Stratified 
α 

Maximal 
Reliability MD-ω 

ρ = 0.3      
BIAS -0.0554 -0.0026 -0.0027 0.0003n = 50 SE 0.0482 0.0336 0.0346 0.0334

      

BIAS -0.0556 -0.0033 -0.0030 -0.0013n = 200 SE 0.0211 0.0155 0.0156 0.0153
      

BIAS -0.0531 -0.0014 -0.0012 0.0003n = 500 SE 0.0126 0.0093 0.0093 0.0091
      

BIAS -0.0525 -0.0012 -0.0010 0.0005n = 1000 SE 0.0095 0.0069 0.0070 0.0069
      

BIAS -0.0516 -0.0001 0.0000 0.0014

 
True 
Reliability  
= 0.86 

n = 2000 SE 0.0072 0.0052 0.0052 0.0051
ρ = 0.5      

BIAS -0.0418 -0.0059 -0.0045 -0.0028n = 50 SE 0.0397 0.0297 0.0295 0.0290
      

BIAS -0.0339 -0.0010 -0.0006 0.0008n = 200 SE 0.0177 0.0140 0.0140 0.0136
      

BIAS -0.0334 -0.0005 -0.0004 0.0010n = 500 SE 0.0117 0.0092 0.0092 0.0090
      

BIAS -0.0324 -0.0002 -0.0001 0.0013n = 1000 SE 0.0077 0.0062 0.0063 0.0062
      

BIAS -0.0320 0.0005 0.0006 0.0019

 
True 
Reliability  
= 0.87 

n = 2000 SE 0.0055 0.0042 0.0042 0.0041
ρ = 0.8      

BIAS -0.0134 -0.0019 -0.0010 0.0008n = 50 SE 0.0264 0.0233 0.0233 0.0228
      

BIAS -0.0122 -0.0011 -0.0009 0.0005n = 200 SE 0.0146 0.0133 0.0133 0.0130
      

BIAS -0.0104 0.0006 0.0008 0.0020n = 500 SE 0.0081 0.0075 0.0075 0.0073
      

BIAS -0.0112 -0.0001 0.0001 0.0012n = 1000 SE 0.0059 0.0054 0.0054 0.0053
      

BIAS -0.0110 0.0001 0.0002 0.0013

 
True 
Reliability  
= 0.89 

n = 2000 SE 0.0043 0.0040 0.0040 0.0039
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Table 2.  

Simulation Results for Perfect Simple Structure with Low Reliability for One Component – 

Factor Structure 2 

Conditions  Coefficient 
α 

Stratified 
α 

Maximal 
Reliability MD-ω 

ρ = 0.3      
BIAS -0.0615 -0.0078 -0.0048 0.0048n = 50 SE 0.0479 0.0355 0.0341 0.0320

      

BIAS -0.0511 -0.0006 0.0023 0.0096n = 200 SE 0.0259 0.0197 0.0193 0.0177
      

BIAS -0.0514 -0.0013 0.0013 0.0086n = 500 SE 0.0150 0.0115 0.0114 0.0107
      

BIAS -0.0490 0.0006 0.0032 0.0104n = 1000 SE 0.0101 0.0077 0.0076 0.0070
      

BIAS -0.0496 0.0001 0.0027 0.0098

 
True 
Reliability  
= 0.83 

n = 2000 SE 0.0073 0.0055 0.0053 0.0050
ρ = 0.5      

BIAS -0.0397 -0.0072 -0.0044 0.0039n = 50 SE 0.0419 0.0347 0.0356 0.0329
      

BIAS -0.0333 -0.0018 0.0006 0.0077n = 200 SE 0.0205 0.0172 0.0172 0.0156
      

BIAS -0.0332 -0.0014 0.0012 0.0078n = 500 SE 0.0130 0.0107 0.0106 0.0099
      

BIAS -0.0316 0.0000 0.0022 0.0088n = 1000 SE 0.0095 0.0077 0.0076 0.0072
      

BIAS -0.0312 0.0003 0.0025 0.0089

 
True 
Reliability  
= 0.85 

n = 2000 SE 0.0059 0.0049 0.0048 0.0045
ρ = 0.8      

BIAS -0.0176 -0.0063 -0.0040 0.0034n = 50 SE 0.0314 0.0290 0.0287 0.0264
      

BIAS -0.0131 -0.0023 0.0000 0.0060n = 200 SE 0.0148 0.0135 0.0132 0.0122
      

BIAS -0.0114 -0.0003 0.0018 0.0076n = 500 SE 0.0091 0.0083 0.0083 0.0077
      

BIAS -0.0115 -0.0007 0.0013 0.0071n = 1000 SE 0.0065 0.0060 0.0059 0.0055
      

BIAS -0.0111 -0.0002 0.0019 0.0075

 
True 
Reliability  
= 0.87 

n = 2000 SE 0.0043 0.0040 0.0040 0.0037
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Table 3.  

Simulation Results for Perfect Simple Structure with Miss-Specified Component  – Factor 

Structure 3 

Conditions  Coefficient 
α 

Stratified 
α 

Maximal 
Reliability MD-ω 

ρ = 0.3      
BIAS -0.0555 -0.0243 -0.0340 -0.0289n = 50 SE 0.0460 0.0393 0.0482 0.0439

      

BIAS -0.0486 -0.0185 -0.0273 -0.0239n = 200 SE 0.0215 0.0176 0.0211 0.0200
      

BIAS -0.0495 -0.0194 -0.0290 -0.0249n = 500 SE 0.0145 0.0119 0.0145 0.0134
      

BIAS -0.0492 -0.0190 -0.0283 -0.0247n = 1000 SE 0.0094 0.0078 0.0094 0.0087
      

BIAS -0.0483 -0.0181 -0.0272 -0.0238

 
True 
Reliability  
= 0.86 

n = 2000 SE 0.0064 0.0055 0.0065 0.0061
ρ = 0.5      

BIAS -0.0339 -0.0149 -0.0150 -0.0144n = 50 SE 0.0383 0.0337 0.0365 0.0349
      

BIAS -0.0296 -0.0104 -0.0131 -0.0104n = 200 SE 0.0177 0.0152 0.0170 0.0161
      

BIAS -0.0315 -0.0122 -0.0146 -0.0124n = 500 SE 0.0103 0.0091 0.0100 0.0095
      

BIAS -0.0307 -0.0115 -0.0143 -0.0118n = 1000 SE 0.0075 0.0065 0.0073 0.0068
      

BIAS -0.0311 -0.0119 -0.0148 -0.0123

 
True 
Reliability  
= 0.87 

n = 2000 SE 0.0053 0.0047 0.0053 0.0049
ρ = 0.8      

BIAS -0.0154 -0.0081 -0.0068 -0.0055n = 50 SE 0.0275 0.0256 0.0253 0.0252
      

BIAS -0.0107 -0.0043 -0.0031 -0.0028n = 200 SE 0.0121 0.0114 0.0115 0.0112
      

BIAS -0.0108 -0.0041 -0.0031 -0.0028n = 500 SE 0.0077 0.0073 0.0073 0.0072
      

BIAS -0.0102 -0.0037 -0.0027 -0.0025n = 1000 SE 0.0061 0.0057 0.0057 0.0056
      

BIAS -0.0107 -0.0041 -0.0032 -0.0029

 
True 
Reliability  
= 0.89 

n = 2000 SE 0.0041 0.0038 0.0038 0.0037
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Table 4.   

Simulation Results for Perfect Simple Structure with Miss-Specified and Low Reliability 

Component – Factor Structure 4 

Conditions  Coefficient 
α 

Stratified 
α 

Maximal 
Reliability MD-ω 

ρ = 0.3      
BIAS -0.0596 -0.0277 -0.0300 -0.0151n = 50 SE 0.0508 0.0429 0.0483 0.0413

      

BIAS -0.0497 -0.0201 -0.0234 -0.0102n = 200 SE 0.0215 0.0185 0.0211 0.0182
      

BIAS -0.0503 -0.0203 -0.0233 -0.0110n = 500 SE 0.0144 0.0127 0.0143 0.0122
      

BIAS -0.0480 -0.0184 -0.0215 -0.0094n = 1000 SE 0.0100 0.0087 0.0098 0.0084
      

BIAS -0.0471 -0.0177 -0.0206 -0.0087

 
True 
Reliability  
= 0.84 

n = 2000 SE 0.0068 0.0058 0.0069 0.0058
ρ = 0.5      

BIAS -0.0333 -0.0151 -0.0138 -0.0039n = 50 SE 0.0405 0.0369 0.0417 0.0347
      

BIAS -0.0312 -0.0124 -0.0118 -0.0020n = 200 SE 0.0196 0.0175 0.0184 0.0163
      

BIAS -0.0300 -0.0113 -0.0109 -0.0013n = 500 SE 0.0113 0.0102 0.0112 0.0095
      

BIAS -0.0308 -0.0118 -0.0111 -0.0017n = 1000 SE 0.0084 0.0076 0.0083 0.0072
      

BIAS -0.0301 -0.0112 -0.0106 -0.0014

 
True 
Reliability  
= 0.85 

n = 2000 SE 0.0062 0.0055 0.0060 0.0052
ρ = 0.8      

BIAS -0.0201 -0.0139 -0.0104 -0.0026n = 50 SE 0.0334 0.0327 0.0342 0.0296
      

BIAS -0.0122 -0.0058 -0.0021 0.0041n = 200 SE 0.0148 0.0142 0.0142 0.0128
      

BIAS -0.0112 -0.0047 -0.0014 0.0046n = 500 SE 0.0089 0.0085 0.0086 0.0079
      

BIAS -0.0105 -0.0040 -0.0007 0.0051n = 1000 SE 0.0062 0.0059 0.0059 0.0054
      

BIAS -0.0107 -0.0043 -0.0012 0.0049

 
True 
Reliability  
= 0.88 

n = 2000 SE 0.0047 0.0045 0.0045 0.0041
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Table 5.  

Simulation Results for Complex Structure – Factor Structure 5 

Conditions  Coefficient 
α 

Stratified 
α 

Maximal 
Reliability MD-ω 

ρ = 0.3      
BIAS -0.0424 -0.0046 -0.0167 0.0043n = 50 SE 0.0374 0.0274 0.0330 0.0255

      

BIAS -0.0391 -0.0009 -0.0128 0.0064n = 200 SE 0.0192 0.0141 0.0165 0.0132
      

BIAS -0.0369 0.0002 -0.0116 0.0069n = 500 SE 0.0125 0.0095 0.0110 0.0090
      

BIAS -0.0371 0.0003 -0.0117 0.0068n = 1000 SE 0.0077 0.0060 0.0071 0.0056
      

BIAS -0.0372 0.0004 -0.0115 0.0069

 
True 
Reliability  
= 0.87 

n = 2000 SE 0.0056 0.0043 0.0050 0.0041
ρ = 0.5      

BIAS -0.0306 -0.0053 -0.0122 0.0012n = 50 SE 0.0322 0.0258 0.0296 0.0243
      

BIAS -0.0257 -0.0010 -0.0078 0.0036n = 200 SE 0.0154 0.0124 0.0137 0.0120
      

BIAS -0.0251 -0.0007 -0.0076 0.0038n = 500 SE 0.0096 0.0078 0.0087 0.0074
      

BIAS -0.0251 -0.0006 -0.0075 0.0037n = 1000 SE 0.0068 0.0057 0.0063 0.0054
      

BIAS -0.0246 -0.0003 -0.0072 0.0039

 
True 
Reliability  
= 0.88 

n = 2000 SE 0.0048 0.0040 0.0045 0.0039
ρ = 0.8      

BIAS -0.0148 -0.0055 -0.0069 -0.0013n = 50 SE 0.0267 0.0243 0.0253 0.0231
      

BIAS -0.0102 -0.0015 -0.0033 0.0010n = 200 SE 0.0125 0.0115 0.0119 0.0112
      

BIAS -0.0090 -0.0004 -0.0024 0.0019n = 500 SE 0.0078 0.0072 0.0076 0.0070
      

BIAS -0.0084 0.0002 -0.0018 0.0023n = 1000 SE 0.0054 0.0050 0.0053 0.0049
      

BIAS -0.0089 -0.0003 -0.0023 0.0018

 
True 
Reliability  
= 0.89 

n = 2000 SE 0.0040 0.0038 0.0039 0.0037
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Figure  

(a) r = 0.3

Sample Size

n=2000n=1000n=500n=200n=50

R
M

S
E

.04

.03

.02

.01

0.00

METHOD

Stratified alpha

Max Reliability

MD Omega

 
(b) r = 0.5

Sample Size

n=2000n=1000n=500n=200n=50

R
M

S
E

.04

.03

.02

.01

0.00

METHOD

Stratified alpha

Max Reliability

MD Omega

 
(c) r = 0.8
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Figure 1. RMSE for Perfect Simple Structure – Factor Structure 1 
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Figure  
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(c) r = 0.8
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Figure 2. RMSE for Perfect Simple Structure with Low Reliability for One Component – Factor 
Structure 2 
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Figure  
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Figure 3. RMSE for Perfect Simple Structure with Miss-Specified Component  – Factor 
Structure 3  
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Figure  
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Figure 4. RMSE for Perfect Simple Structure with Miss-Specified and Low Reliability 
Component – Factor Structure 4 
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Figure  
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Figure 5. RMSE for Complex Structure – Factor Structure 5 
 


