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In testing factorial invariance, researchers have often used a reference variable

strategy in which the factor loading for a variable (i.e., reference variable) is

fixed to 1 for identification. This commonly used method can be misleading if the

chosen reference variable is actually a noninvariant item. This simulation study

suggests an alternative method for testing factorial invariance and evaluates the

performance of the method in specification searches based on the modification

index. The results of the study showed that the proposed specification searches

performed well when the number of noninvariant variables was relatively small

and this performance improved as sample size increased and the size of group

differences increased. When the number of noninvariant variables was relatively

large, however, the method rarely succeeded in detecting the noninvariant items

in the specification searches. Implications of the findings are discussed along with

the limitations of the study.

Measurement invariance, also known as measurement equivalence (Cheung &

Rensvold, 1998), has recently gained attention in different disciplines of social

science, including cross-cultural research (Cheung & Rensvold, 1998; Little,

1997) and organizational behavior research (Byrne, 1991; Marsh & Roche,

1996). The primary reason for this appeal is that measurement invariance is

needed to interpret group differences in observed scores. In other words,
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436 DETECTING PARTIAL INVARIANCE

researchers must make sure that the relation between observed variables and

underlying constructs is the same across groups, or that measurement invariance

holds, before comparing observed scores between groups.

A common approach to examining measurement invariance is to apply confir-

matory factor analysis (CFA), where a linear relation between observed scores

and underlying construct is assumed. Meade and Lautenschlager (2004) con-

ducted a Monte Carlo study to evaluate CFA tests for testing measurement

invariance. They showed that CFA tests of measurement invariance performed

well under ideal conditions such as large sample size, a sufficient number of

manifest indicators, and moderate or high communalities. In the baseline model

of the study, they picked one of the invariant items as a reference variable, as

invariant items are known in the simulation study. However, invariant items are

not known in real data, thus researchers must rely on theoretical grounds to pick

an adequate reference variable.

The purpose of this study is to evaluate a method for examining partial

factorial invariance without choosing a variable to serve as a reference. By

avoiding this choice, the method avoids the problem of choosing a noninvariant

reference variable.

MEASUREMENT INVARIANCE

A formal definition of measurement invariance in terms of probabilities is that

invariance holds if and only if

P.X jW; G/ D P.X jW /; (1)

where X is a vector of observable variables, W is a vector of latent variables

underlying X , and G represents an indicator for group membership. As a neces-

sary and sufficient condition of measurement invariance, Equation 1 states that

the conditional probability of X given W is independent of G. That is, mea-

surement invariance holds when the relation of observed variables to a set of

underlying latent variables is independent of group membership (Mellenburgh,

1989; Meredith & Millsap, 1992; Millsap, 1995). In a single-factor case, for

example, to fulfill measurement invariance, persons with the same status on an

underlying latent variable should have the same probability of achieving any ob-

served score regardless of group membership. If measurement invariance does

not hold, group differences on the observed score might be difficult to interpret

because different factor structures might be confounded with group differences

on the latent variable in producing group differences on the observed score

(Millsap, 1997).
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FACTORIAL INVARIANCE

A major methodological approach for testing measurement invariance is CFA,

where a researcher tests a theory-based factor model under invariance constraints.

The measurement model in CFA specifies a linear relation between p observed

variables and m common factors, represented by the following equation:

X D £ C ƒŸ C •; (2)

where X refers to the p � 1 vector of observed scores, £ is the p � 1 vector of

measurement intercepts, ƒ is the p � m factor pattern matrix, Ÿ is the m � 1

vector of underlying factor scores, and • is the p � 1 vector of unique factor

scores. For the multiple group case, the corresponding measurement model is

Xg D £g C ƒgŸg C •g ; (3)

where g indicates group membership. Given that factor scores (Ÿ) and unique fac-

tors (•) within each group are assumed to be uncorrelated (i.e., COV.Ÿg ; •g/ D

0), the covariance structure of X in group g is:

†g D ƒgˆgƒ0

g C ‚g ; (4)

where ‚g is the typically diagonal matrix of unique variances and ˆg is the

factor covariance matrix in group g. Also, assuming that the unique factors have

zero means in Equation 3, the expectation of X in each group is:

E.Xg / D £g C ƒg›g ; (5)

where ›g is the factor mean in group g. If measurement invariance holds, it

follows that ‚g D ‚, £g D £, and ƒg D ƒ, leading to simplifications in

Equations 4 and 5 as

†g D ƒˆgƒ0 C ‚; (6)

E.Xg / D £ C ƒ›g (7)

Equation 6 states that the difference in covariance structure of observed scores

between groups is due to the difference in covariance structure of latent variables

(factors) between groups, as long as measurement invariance holds. Equation 7

states that the systematic differences in group means on X are due to group

differences in factor means ›g . Equations 6 and 7 represent the condition of

strict factorial invariance (Meredith, 1993).

Conditions of factorial invariance are considered hierarchically in this order:

configural invariance, metric invariance, scalar invariance, and strict invariance
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TABLE 1

Hierarchical Model of Factorial Invariance

Model Condition

Configural If œij is fixed to zero for one group, then œij should be fixed for other groups.

If œij is freely estimated for one group, then œij should be freely estimated

for other groups (variable i D 1; 2; : : : p, factor j D 1; 2; : : : ; m)

Partial metric œijg D œij only for some set of i and j .

Metric (pattern) ƒg D ƒ

Scalar (strong) ƒg D ƒ, £g D £

Strict ƒg D ƒ, £g D £, ‚g D ‚

Note. ƒg is the p �m factor pattern matrix in group g, £g is the p �1 vector of measurement

intercepts in group g, and ‚g is the typically diagonal matrix of unique variances in group g.

(Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 2000). Table 1 presents

a summary of levels of factorial invariance. The least restrictive model provides

configural invariance where the pattern of zero and nonzero loadings should

be same across groups (Steenkamp & Baumgartner, 1998; Thurstone, 1947). In

other words, if the same pattern of free and fixed loadings with same number

of factors across groups can fit the data well, then the measures have configural

invariance across groups. This level of invariance provides a baseline model

to pursue higher levels of factorial invariance. The next level is metric invari-

ance (also called pattern invariance), which can be defined by identical factor

pattern matrices across groups .ƒg D ƒ/, but allows differences in unique vari-

ances and intercepts (Horn & McArdle, 1992; Millsap, 1997; Thurstone, 1947).

If a measure satisfies pattern invariance, then the invariance of intercepts can

be tested as the next level of invariance .£g D £/. This level of invariance is

called scalar invariance or strong invariance, which makes group mean com-

parisons meaningful (Meredith, 1993). The last condition of invariance requires

invariance in the unique variances across groups .‚g D ‚/, leading to strict

factorial invariance. Under strict factorial invariance, systematic group differ-

ences in means or covariance matrices are due to group differences in common

factor score distributions. Recently, testing for the invariance of intercepts (i.e.,

scalar invariance) has gained attention as a required step for testing invariance

across groups (Little, 1997, 2000; Meredith, 1993). The results presented here

focus on metric invariance; scalar invariance is not addressed.

PARTIAL METRIC INVARIANCE

Among the different levels of factorial invariance, metric invariance has been

most discussed in the literature (Vandenberg & Lance, 2000). However, full
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metric invariance (i.e., invariance of all factor loadings) is untenable in some

cases. Instead of full metric invariance, partial metric invariance (i.e., invariance

of some of factor loadings) has been discussed for more than a decade (Byrne,

Shavelson, & Muthén, 1989; Cheung & Rensvold, 1998; Reise, Widaman, &

Pugh, 1993; Steenkamp & Baumgartner, 1998).

Under partial metric invariance, noninvariant items can be retained with varied

loadings across groups (Cheung & Rensvold, 1998). Byrne et al. (1989) argued

that full metric invariance is not a prerequisite step for testing more restrictive

models such as scalar invariance and strict invariance, or for comparing factor

means across groups. However, the effect of the proportion (or number) of

invariant items is not clear. Reise et al. (1993) proposed that a majority of

items on a given latent variable should have invariant loadings across groups

to ensure the nonarbitrariness of the group comparisons. Cheung and Rensvold

(1998) stated that noninvariant items usually constitute only a small portion

of the model and thus have little effect on group comparisons. On the other

hand, Steenkamp and Baumgartner (1998) pointed out that partial invariance is

acceptable if the compared groups have invariant loadings across groups for at

least one item other than the reference variable for which loadings are fixed to

one for all groups.

In addition to the proportion of invariant items across groups, there is an-

other important issue to consider before comparing the means of a particular

measure with partial metric invariance across groups: the choice of constraints

for model identification across groups. Two commonly used methods for iden-

tifying the factor model in single group studies are to either fix the variance of

each factor to one, or fix a loading for each factor to one. Additional constraints

are required, which typically include setting subsets of loadings to zero. When

conducting multiple group comparisons, however, fixing the variance of a factor

is not recommended. If the factor variance is fixed to one in each group, the

resulting implicit standardization would alter the loadings in each group, and

would do so in ways that differ across groups if the factor variances differ. As

a result, factor pattern matrices that are truly invariant would not appear to be

so because of these standardizations. Thus, fixing one of the loadings is pre-

ferred for model identification, with the same loadings being fixed to one in each

group.

In practice, full metric invariance may be rejected, leading to questions about

which factor loadings differ across groups. To answer such questions, mod-

els representing different configurations of invariant and noninvariant loadings

(i.e., partial metric invariance) can be tested in hopes of finding which loadings

differ across groups. Here the use of a fixed loading for identification purposes

can interfere with the process of finding the correct model of partial invariance

(Cheung & Rensvold, 1999). If the chosen reference variable is actually one

with varying loadings across groups, the forced fixed loading can distort the
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pattern of invariant and noninvariant loadings and can lead to choice of the

wrong model.

Mathematical Illustration of the Reference

Variable Problem

To illustrate the problem of choosing which loading to fix, suppose that we

have a single-factor case with two groups. Let ƒ1 and ƒ2 denote factor loading

vectors in the first group and the second group, respectively. Suppose that the

factor loading vector in each group can be written
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; (8)

In Equation 8, the first m variables are invariant and the last .p � m/ variables

are noninvariant.

Let †1 and †2 denote covariance matrices in the first group and the second

group, respectively. Then, the covariance matrix for each group can be specified

as

†1 D ƒ1¥1ƒ0

1 C ‚1 and †2 D ƒ2¥2ƒ0

2 C ‚2 (9)

Without any constraints on factor structure, there is an indeterminacy among

the factor loadings, factor variances, and unique variances. For example, the

covariance matrix for each group can be rewritten as

†1 D ƒ�

1¥�

1ƒ�0

1 C ‚1;

†2 D ƒ�

2¥�

2ƒ�0

2 C ‚2

(10)

where ƒ�

1 D ’1ƒ1, ¥�

1 D ’�2
1 ¥1, ƒ�

2 D ’2ƒ2, and ¥�

2 D ’�2
2 ¥2 when ’1 and

’2 are scalars. Given that ’1 and ’2 are arbitrary numbers, an indeterminacy

exists.

We need to pick one of the variables for the reference variable to identify

factor structure. If one of the invariant variables is chosen for a reference vari-

able, the estimated factor loadings will have same invariant and noninvariant
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loading pattern across groups. For example, if the first variable is picked as a

reference variable, then ’1 D ’2 D œ�1
1 , which leads to

ƒ�
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The first m variables are still invariant and the last .p � m/ variables are still

noninvariant.

Different results are obtained if we choose one of the noninvariant variables

as a reference variable. Suppose that the last variable is the chosen reference

variable. Then, we will have ’1 D œ�1
p;1’2 D œ�1

p;2 in Equation 10 and the

resulting factor loading vector for each group is

ƒ�
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It is shown that the first m variables are noninvariant in the new loading vector

by picking a noninvariant variable as the reference variable. This illustrates

the problem of the reference variable strategy in the single-factor case when

researchers are not confident about which variables are truly invariant.

PREVIOUS RESEARCH ON IDENTIFICATION

PROBLEMS IN PARTIAL INVARIANCE

To date, there have been very few studies emphasizing the identification prob-

lem. Reise et al. (1993) illustrated three possible baseline models with the same

degrees of freedom for a two-group comparison: (a) by constraining one of the

loadings to 1 for both groups and freeing the other loadings and factor variance

for both groups; (b) fixing factor variance to 1 for both groups and freeing all

loadings in each group; or (3) fixing the factor variance to 1 in the first group,

constraining one loading to invariance across groups, and estimating factor vari-

ance in the second group and the other loadings in each group separately. They
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argued that the resulting estimates would be in an easily interpreted metric in

the third model. We adopt a similar strategy for models that stipulate metric in-

variance: Fix the factor variance to 1 in one group, constrain all factor loadings

to invariance, and fix no parameters in the second group. The advantage of this

approach is that one does not have to decide a priori which item to use as a

reference variable for identification.

Cheung and Rensvold (1999) approached the reference variable problem in

measurement invariance studies by using the factor-ratio test. The factor-ratio

test is a systematic examination of all possible combinations of referents and

arguments across groups, where referent is the variable selected as a reference,

and argument is the variable being tested for invariance. Thus, there are a total

of p�.p�1/=2 factor ratio tests required assuming a single-factor model, where

p is the number of variables to be tested. With three variables, for example, the

three combinations of tests (i.e., 3�.3�1/=2 D 3/ are conducted as shown here:

1. When choosing the first variable as the reference, perform a chi-square

difference test between the invariance constraint for the second variable

and no constraint for the second variable.

2. When choosing the first variable as the reference, perform a chi-square

difference test between the invariance constraint for the third variable and

no constraint for the third variable.

3. When choosing the second variable as the reference, perform a chi-square

difference test between the invariance constraint for the third variable and

no constraint for the third variable.

As the number of variables increases, the Cheung and Rensvold (1999) method

becomes less attractive. For instance, 45 tests are required if 10 variables are

studied and the chi-square difference tests must be hand-calculated because no

current software does this automatically. Also, to date, there has been no large

simulation study to show that this approach works accurately.

PURPOSE OF THIS STUDY

Consistent with Reise et al. (1993) and Cheung and Rensvold (1999), this study

examines an approach to avoiding or minimizing the problem of choosing a

reference variable in multiple-group invariance studies. To narrow the scope

of this study, we focus on the two-group condition. The results are expected

to generalize to conditions containing three groups or more. To identify the

model under metric invariance for a two-group case, the following method is

suggested: (a) the variance of the factor is fixed to 1 in one group but not in the

other group, and (b) all loadings are constrained to invariance across groups. The
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purpose of these procedures is to examine whether full metric invariance holds

across groups when configural invariance is assumed. If the model of metric

invariance cannot be accepted based on fit indexes, invariance constraints can

be relaxed based on the modification index (MI) values sequentially until the

model reaches adequate fit. In doing so, we only allow loading constraints to be

freed; off-diagonal elements of the unique factor covariance matrix are always

set to zero.

Other researchers have used MI values as a basis for relaxing the invariance

constraints of appropriate loadings (Byrne et al., 1989; Oort, 1998; Reise et al.,

1993; Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 2000). The MI

value computed in LISREL gives the expected drop in the likelihood ratio chi-

square statistic when a constrained parameter is freed, and so it is said to be

a measure of how poorly a particular parameter constraint is chosen (Jöreskog

& Sörbom, 1996a; Muthén & Muthén, 2001). In general, this type of post-hoc

model fitting strategy (i.e., based on MI) has been discouraged because it is data

driven and therefore can give misleading results (MacCallum, 1986; MacCallum,

Roznowski, & Necowitz, 1992). Clearly, any model modification strategy should

be validated on new data. On the other hand, a sequential MI strategy showed no

problems in some cases (MacCallum et al., 1992; Sörbom, 1989). In addition,

the purpose of this study is not to explore all possible alternative models based

on the MI, but only a well-defined subset of models (i.e., those with partial

invariance in loadings). Therefore, it is worthwhile to see how the MI strategy

works for this proposed identification method. The purpose of this study is to

examine whether one could use MIs to accurately discern the partial invariance.

To our knowledge, there have been no published simulation studies that examine

the accuracy of this method. We examine the proposed method within a single-

factor model with covariance structure for two populations. Neither multiple

underlying factors nor mean structures are considered here. However, the results

from this study are expected to extend to those cases.

METHODS

Simulation Conditions

Four major variables were manipulated for this study: (a) the number of mea-

sured variables, (b) sample size, (c) the number of loadings that truly differ

between two groups, and (d) the extent of the group difference in each loading.

Number of measured variables. We considered two conditions for the

number of measured variables. In one condition, 6 variables were simulated

and 12 variables were simulated in the other condition. These conditions have
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been used previously in a simulation study of factorial invariance (Meade &

Lautenschlager, 2004). In both conditions, one common factor was assumed to

underlie these observed variables.

Sample size. Sample sizes were varied with N D 200 and N D 500 per

group. MacCallum, Widaman, Zhang, and Hong (1999) did a simulation study

to examine the impact of varying sample sizes in factor analysis. They showed

that the required sample size decreased as communalities increased and the

ratio of variables to factors increased. According to MacCallum et al., N D 200

is needed to adequately recover a population model in factor analysis when

communalities are low and ratio of variables to factors is 20:3, which is close

to our six-variable condition. We included a larger sample size (N D 500) than

the minimum to see the effect of sample size, if any.

Frequency of noninvariant items. Either one-third or two-thirds of the

variables are noninvariant in loadings across groups. In the low frequency con-

dition, one-third of variables are noninvariant, whereas two-thirds of variables

are noninvariant in the high frequency condition. The detection of the noninvari-

ant items in the high frequency condition is expected to be more difficult due

to the limited basis for comparisons across groups under these conditions.

Size of difference between groups. Group differences in loadings were

created by keeping the same set of loadings in the first group under all condi-

tions, while varying the loadings in the second group. Although it would have

been possible to create the second group loadings by simply subtracting a con-

stant amount from selected first group loadings, this approach was not adopted

because a fixed loading difference might have different meanings depending on

loading size. For example, the difference between loadings of .9 and .8 might

not have the same importance or practical significance as the difference between

loadings of .5 and .4. For this reason, loading differences were instead created

via proportional rescalings in a two-step process. In Step 1, the first Group 2

loading was created by subtracting a fixed constant from .7, which was the first

loading in Group 1. Here a difference of .1 was considered to be a small group

difference, a difference of .2 was considered a medium difference, and a differ-

ence of .3 was considered large. In Step 2, the remaining noninvariant loadings

in Group 2 were created as being proportional to their counterparts in Group 1,

using a constant of proportionality that reflected the proportional drop in Step 1.

For example, if the drop in Step 1 went to .6 from .7, the proportional drop was

(.7 � .6)/.7 or 1/7. Hence all other noninvariant loadings in Group 2 were set

to b � b=7 or b(6/7), where b is the counterpart loading in Group 1. If the drop

in Step 1 went to .5 from .7, the proportional drop was (.7 � .5)/.7 or 2/7. The

other noninvariant loadings in Group 2 were set to b � b(2/7) or b(5/7).
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Other conditions. Under the preceding conditions, the loading differences

across groups for noninvariant variables were proportional. As shown in Appen-

dix A, this proportionality can lead to difficulties in locating which items are

noninvariant. To address this problem, conditions in which the loadings for the

noninvariant variables differed across groups but were not proportionally dif-

ferent were added. Also, the case where noninvariant loadings have a mixed

pattern in which some loadings were higher in one group and some loadings

were lower in that group was added. Based on the previous study (Meade &

Lautenschlager, 2004) in which testing factorial invariance had higher power in

the mixed condition than the uniformly lower (or higher) condition, we expect

that our specification searches perform better in the mixed pattern of loading

condition. To shorten the procedure, we tested these two conditions in the case

where two thirds of variables are noninvariant (high frequency), sample size is

large, the loading difference is large, and the number of variables is six. In all

other conditions, noninvariant loadings are uniformly and proportionally lower

in the second group.

In sum, the main portion of this study has four manipulated variables with

2 � 2 � 2 � 3 D 24 different conditions. We investigated whether the proposed

approach performed differently in the mixed pattern of loadings, and whether

the result will be changed if loadings in noninvariant items are not proportional

to each other. We evaluated these two conditions for only the N D 500 and

six-variable case, making the total number of simulation conditions 26.

Table 2 presents population loading parameters, unique variances, and factor

variances for each condition. For example, to construct the population covariance

matrix for low frequency with six variables, the specified structure of the first

group is
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and the specified structure of the second group is

ƒ2 D

2

6

6

6

6

6

6

4

:6

:77

:5

:6

:8

:3

3

7

7

7

7

7

7

5

; ¥2 D 1:3; ‚2 D

2

6

6

6

6

6

6

4

:8

1:3

:4

:5

:9

:2

3

7

7

7

7

7

7

5

:



446 DETECTING PARTIAL INVARIANCE

TABLE 2

Simulation Condition for Six-Variable Cases

Condition Loading Difference Population Parameter Values

Low frequency Small ƒ2 D [.6, .77, .5, .6, .8, .3]

‚1D2 D [.8, 1.3, .4, .5, .9, .2]

Medium ƒ2 D [.5, .64, .5, .6, .8, .3]

‚1D2 D [.7, 1.3, .4, .5, .9, .2]

Large ƒ2 D [.4, .51, .5, .6, .8, .3]

‚1D2 D [.7, 1.2, .4, .5, .9, .2]

High frequency Small ƒ2 D [.6, .77, .5, .51, .69, .3]

‚1D2 D [.8, 1.3, .4, .6, .9, .2]

Medium ƒ2 D [.5, .64, .5, .43, .57, .3]

‚1D2 D [.7, 1.3, .4, .5, .9, .2]

Large ƒ2 D [.4, .51, .5, .34, .46, .3]

‚1D2 D [.7, 1.2, .4, .5, .9, .2]

High frequency/mixed Large ƒ2 D [.4, .51, .5, .86, 1.14, .3]

‚1D2 D [.7, 1.2, .4, 1.1, 1.8, .2]

High frequency/nonproportional Large ƒ2 D [.25, .65, .5, .45, .45, .3]

‚1D2 D [.5, 1.2, .4, .4, .9, .2]

Note. The factor variances are set to 1 and 1.3 in the first and second group, respectively, for

all conditions. ƒ2 is the vector of population factor loadings in the second group and ‚1D2 is the

vector of population-unique variances that applied to both groups. The population factor loadings

for the first group are same across all conditions, ƒ1 D [.7, .9, .5, .6, .8, .3].

Factor loading values are arbitrarily chosen in the first group and factor

loadings for noninvariant variables in the second group were proportionally

lower than the first group. In the small loading difference case, for example,

the loading of the second item in the second group is :9.6=7/ D :77 and the

loading in the second group for the medium difference case is :9.5=7/ D :64. In

the mixed design, the loadings of the first and second items were lower and the

loadings of the fourth and fifth items were higher in the second group than the

first group. For the calculation of loadings higher than the first group, the value

of loading of the fourth variable is :6� .10=7/ D :86 and the loading of the fifth

variable is :8 � .10=7/ D 1:14. In the nonproportional loading pattern condition,

four noninvariant loadings in the second group lowered by .15, .25, .35, and

.45 with a mean of .3 difference. In this case, the variables with noninvariant

loadings were randomly selected.

Across all conditions, factor variances are set to 1 in the first group and 1.3 in

the second group. In this study, we generated samples with low communalities

between .1 and .5. The unique variances are assigned to be the same for two

groups and to have adequate communality .h2
j
/ for each measured variable,
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based on following equation (i.e., the communality in variable j ):

h2
j D

œ2
j
¥

œ2
j
¥ C ™j

(11)

The communalities used for the six-variable case are shown in Table 3. The

parameter values and communalities are chosen in the same way for the 12-

variable case. For example, population parameter values for low frequency in

the 12-variable case are the following:

ƒ1 D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

:7

:9

:5

:6

:8

:3

:7

:9

:5

:6

:8

:3

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; ƒ2 D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

:6

:77

:5

:6

:8

:3

:6

:77

:5

:6

:8

:3

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; ‚1D2 D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

:8

1:3

:4

:5

:9

:2

:8

1:3

:4

:5

:9

:2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; H1 D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

:38

:38

:38

:42

:42

:31

:38

:38

:38

:42

:42

:31

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; H2 D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

:37

:37

:45

:48

:48

:37

:37

:37

:45

:48

:48

:37

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

¥1 D 1:0; ¥2 D 1:3;

where H1 is communalities in the first group and H2 D communalities in the

second group.

Simulation Procedure

Data were simulated through two main procedures. First, the population covari-

ance matrix was calculated based on Equation 4 for each condition. In Equation

4, the factor loadings and the factor variances were fixed at the values of interest

and unique variances were chosen to yield communalities between .1 and .5 as

described earlier. Then, the LISREL program was used to calculate the popula-

tion covariance matrix of each group for each condition. The fitted covariance

matrix for each group in the LISREL output is the population covariance matrix

for each group and each condition.

Second, following the steps in Jöreskogand Sörbom (1996b, pp. 189–194),

100 samples of size N from the appropriate multivariate normal distribution

were simulated for each condition and each group. Two steps were taken here.
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TABLE 3

Communalities in the Case of Six Variables

Condition Loading Difference Communalities

Low frequency Small H1 D [.38, .38, .38, .42, .42, .31]

H2 D [.37, .37, .45, .48, .48, .37]

Medium H1 D [.41, .38, .38, .42, .42, .31]

H2 D [.32, .29, .45, .48, .48, .37]

Large H1 D [.41, .40, .38, .42, .42, .31]

H2 D [.23, .22, .45, .48, .48, .37]

High frequency Small H1 D [.38, .38, .38, .38, .42, .31]

H2 D [.37, .37, .45, .36, .41, .37]

Medium H1 D [.41, .38, .38, .42, .42, .31]

H2 D [.32, .29, .45, .32, .32, .37]

Large H1 D [.41, .40, .38, .42, .42, .31]

H2 D [.23, .22, .45, .23, .23, .37]

High frequency/mixed Large H1 D [.41, .40, .38, .25, .26, .31]

H2 D [.23, .22, .45, .47, .48, .37]

High frequency/nonproportional Large H1 D [.49, .40, .38, .47, .42, .31]

H2 D [.14, .31, .45, .40, .23, .37]

Note. H1 D vector of communalities in the first group; H2 D vector of communalities in the

second group.

First, the LISREL program was used to find T in the triangular factoring † D

T T 0, where † represents the population covariance matrix. Then, the PRELIS

program was used to generate multivariate normal variables using T in the

LISREL output of the previous step.

Analysis

Simulated data were analyzed using LISREL (Version 8.53). We fit the full

metric invariance as an initial model, and this model was adjusted sequentially,

freeing the loading that had the largest MI until the largest MI was no longer

significant at the .05 significance level. These sequential adjustments were done

automatically using the AM option in LISREL, which runs a sequence of mod-

els by freeing one constraint at a time based on the largest MI (Jöreskog &

Sörbom, 1996a). All loadings were constrained to be invariant between groups

in the initial model but unique variances were freely estimated without equal-

ity constraints at any time in these analyses. Covariances among unique factor

scores (off-diagonals of ‚) were always fixed to zero.

The results will be summarized in terms of the number of true and false

detections. In the search of noninvariant variables based on the MI, true detection
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is defined as detection of a noninvariant item and false detection is a detection

of an invariant item as noninvariant. Three primary dependent measures were

evaluated to check the performance of suggested procedure.

Perfect recovery rate. It is important to know what percentage of samples

recovered the true model through the model modification sequence. The term

perfect recovery rate is used for this percentage of interest. To put it another

way, perfect recovery happened when all noninvariant variables were detected

in the final estimated model without falsely detecting any invariant variable as

noninvariant along the way. Logistic regression was used to decide which of the

manipulated variables had a statistically significant effect on the perfect recovery

rate.

True and false detection. It is also important to know the number of

true and false detections along with the perfect recovery rate. We looked at the

number of true detections to see how well the proposed procedure performed

and we also checked the number of false detections to evaluate how badly it

performed.

RMSEA. We checked the root mean square error of approximation

(RMSEA) for the initial model where all factor loadings were constrained to

be invariant. The RMSEA value at each subsequent step was also recorded.

We expected the RMSEA to be higher across study conditions as the loading

difference increased and frequency of noninvariant variables increased.

RESULTS

Perfect Recovery Rate

Perfect recovery rate in each condition is shown in Table 4.

Low frequency. In the low frequency condition, specification searches

based on the MI were more successful as the size of loading difference in-

creased, the sample size increased, and the number of variables decreased. The

best performance occurred in the condition of the large loading difference with

N D 500 and six items in which 83% of samples led to perfect recovery where

all noninvariant items were detected in the specification searches without detect-

ing any invariant item as noninvariant.
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TABLE 4

Perfect Recovery Rate

Sample Size

Condition

Loading

Difference 200 500

Low frequency/6 variables Small .00 .10

Medium .12 .55

Large .65 .83

Low frequency/12 variables Small .00 .00

Medium .08 .56

Large .41 .61

High frequency/6 variables Small .00 .00

Medium .00 .00

Large .02 .01

High frequency/6 variables/mixed Large .26

High frequency/6 variables/nonproportional Large .16

High frequency/12 variables Small .00 .00

Medium .00 .00

Large .00 .00

Note. In mixed condition, half of noninvariant variables were higher and the

other half were lower in the first group than the second group. Nonproportional

represents the condition where noninvariant loadings are not proportional to each

other.

High frequency. In the high frequency condition, however, the same pat-

tern was not observed. The specification searches were very bad in those cases.

In the six-variable case with large loading difference, only 2 samples out of 100

led to perfect recovery in the N D 200 condition and 1 sample in the N D 500

condition. In the 6-variable case with small and medium loading difference and

in the 12-variable case, perfect recovery was not produced even once out of 100

samples. Both the mixed design and nonproportionality increased the perfect re-

covery rate in the high frequency condition, although it was still far from being

perfect. In the mixed design with six variables, 26% of samples had the per-

fect recovery. When noninvariant loadings are not proportional, 16% of samples

reached perfect recovery.

Logistic regression results confirmed significant effects of the size of loading

differences .p < :001/, the frequency .p < :001/, the number of measured

variables .p < :001/, and sample size .p < :001/, on the perfect recovery rate.

We calculated the approximate pseudo r2 statistic for each of the effects. The

Nagelkerke r2 statistic in each logistic regression with single factor was .173,

.261, .009, and .039 for the effects of size of loading differences, the frequency,

the number of measured variables, and the sample size, respectively. Not sur-

prisingly, the frequency of noninvariant items had the highest Nagelkerke r2.
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True Detection: Detecting Noninvariant Variables

as Noninvariant

Both possible and maximum numbers of true detections were different across

conditions. In the six-variable condition, the possible number of true detections

are 0, 1, and 2 (maximum) for the low frequency condition and 0, 1, 2, 3, and 4

(maximum) for the high frequency condition. In the 12-variable condition, the

maximum number of true detections is 4 for the low frequency condition and 8

for the high frequency condition. To simplify Table 5, we present only the cases

where zero or all of the noninvariant variables were detected, as those cases are

of the most interest (see Appendix B for more detailed tables). Table 5 gives

the proportions of samples with zero (on the left) and maximum (on the right)

true detections.

Low frequency. In the low frequency condition, the pattern of true de-

tections looked different across the conditions of loading differences and sam-

ple size. For both the 6- and 12-variable conditions, the modification search

TABLE 5

The Proportion of Zero and Maximum True Detections

Zero

Detection

Maximum

Detection

Sample Size Sample Size

Condition

Loading

Difference 200 500 200 500

Low frequency/6 variables Small .80 .61 .00 .11

Medium .40 .14 .15 .66

Large .10 .01 .70 .98

Low frequency/12 variables Small .61 .45 .00 .00

Medium .11 .00 .09 .80

Large .01 .00 .62 1.00

High frequency/6 variables Small .80 .77 .00 .00

Medium .70 .70 .00 .00

Large .63 .67 .02 .01

High frequency/6 variables/mixed Large .00 .26

High frequency/6 variables/nonproportional Large .00 .16

High frequency/12 variables Small .50 .44 .00 .00

Medium .41 .52 .00 .00

Large .49 .48 .00 .00

Note. In the mixed condition, half of noninvariant variables were higher and the other half

were lower in the first group than the second group. Nonproportional represents the condition where

noninvariant loadings are not proportional to each other.
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procedure performed better with the larger sample size and larger loading dif-

ference. More samples had maximum true detections and fewer samples had

zero true detections as sample size increased and as the loading difference in-

creased. In the large loading difference with N D 500, 98 samples had all 2

noninvariant variables detected in the 6-variable condition and all 100 samples

had all 4 noninvariant variables detected in the 12-variable condition, whereas

in the small loading difference with N D 200, 80 and 61 samples had zero true

detections for the 6- and 12-variable conditions, respectively.

High frequency. When two-thirds of variables were noninvariant (high fre-

quency), maximum true detections were rarely observed, especially when the

noninvariant variables had uniformly and proportionally lower or higher load-

ings in one group, as only 3 samples out of 1,200 had maximum true detections

and most of these had no detection of a noninvariant variable. Mixed (and pro-

portional) pattern of loadings and nonproportional (and nonmixed) pattern of

loadings conditions increased the proportion of maximum true detections up to

.26 and .16, respectively. In both conditions, at least one true detection was

found.

False Detection: Detecting Invariant Variables

as Noninvariant

As in the true detection case, the possible and maximum numbers of false

detections were different across conditions. In the six-variable condition, the

possible numbers of false detections were 0, 1, 2, 3, and 4 (maximum) for

the low frequency condition and 0, 1, and 2 (maximum) for the high frequency

condition. In the 12-variable condition, the maximum number of false detections

is 8 for low frequency and 4 for high frequency. As in the true detection case, we

present only the cases where none or all of the invariant variables were detected

as noninvariant (see Appendix B for more detailed tables). Table 6 gives the

proportions of samples with zero (on the left) and maximum (on the right) false

detections.

Low frequency. When one-third of the variables are noninvariant (low

frequency), more than half had no false detections across the different conditions

of loading difference and sample size. This proportion seemed higher with 6

variables than in the 12-variable condition. The proportion of samples with

no false detections ranged from .69 to .84 in the 6-variable condition and .51

to .67 in the 12-variable condition. There were none that had maximum false

detections.
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TABLE 6

The Proportion of Zero and Maximum False Detections

Zero

Detection

Maximum

Detection

Sample Size Sample Size

Condition

Loading

Difference 200 500 200 500

Low frequency/6 variables Small .84 .75 .00 .00

Medium .69 .76 .00 .00

Large .84 .84 .00 .00

Low frequency/12 variables Small .51 .58 .00 .00

Medium .60 .67 .00 .00

Large .62 .61 .00 .00

High frequency/6 variables Small .82 .71 .00 .06

Medium .39 .12 .30 .71

Large .18 .03 .68 .96

High frequency/6 variables/mixed Large .56 .21

High frequency/6 variables/nonproportional Large .33 .45

High frequency/12 variables Small .62 .47 .00 .05

Medium .19 .00 .16 .77

Large .02 .01 .71 .97

Note. In the mixed condition, half of noninvariant variables were higher and the other half

were lower in the first group than the second group. Nonproportional represents the condition where

noninvariant loadings are not proportional to each other.

High frequency. When two-thirds of the variables were noninvariant (high

frequency), there was more variability in the proportion of samples with no false

detection. This proportion decreased as the size of loading difference increased

and the sample size increased. When the loading difference is large and the

sample size is 500, only four samples had no false detections involved (three

for the 6-variable condition and one for the 12-variable condition). The mixed

(and proportional) pattern of loadings and the nonproportional (and nonmixed)

pattern of loadings increased the proportion of no false detections to .56 and .33,

respectively. There was also variability in the proportion of samples with max-

imum false detections. The proportion of maximum false detections increased

as the size of the loading difference increased and the sample size increased.

This proportion went up to .96 in the 6-variable condition and .97 in the 12-

variable condition when the loading difference is large and the sample size is

500. The mixed (and proportional) pattern of loadings and the nonproportional

(and nonmixed) pattern of loadings decreased the proportion of maximum false

detections to .21 and .45, respectively.
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TABLE 7

Mean and Standard Deviation of RMSEA in the Initial Model

Sample Size

200 500

Condition

Loading

Difference M SD M SD

Low frequency/6 variables Small .018 .020 .019 .014

Medium .033 .023 .034 .015

Large .057 .021 .058 .011

Low frequency/12 variables Small .015 .014 .013 .008

Medium .021 .014 .025 .008

Large .039 .012 .040 .006

High frequency/6 variables Small .019 .020 .015 .014

Medium .033 .024 .032 .013

Large .052 .022 .057 .011

High frequency/6 variables/mixed Large .078 .010

High frequency/6 variables/nonproportional Large .073 .011

High frequency/12 variables Small .015 .014 .013 .010

Medium .025 .012 .025 .009

Large .039 .011 .040 .006

RMSEA

Table 7 gives the means and standard deviations of RMSEA in the initial model

where all loadings were constrained to be invariant. Surprisingly, the means of

RMSEA were not very high even when two thirds of the variables were non-

invariant (high frequency condition) with large loading differences. The largest

RMSEA averages for the nonmixed and proportional loading conditions were

.058. In the mixed pattern of loadings and the nonproportional pattern of load-

ings, the RMSEA averages were .078 and .073, respectively. As expected, higher

means of RMSEA were obtained as the loading difference increased. However,

the frequency of noninvariant variables did not greatly increase the magnitude

of the RMSEA in the studied conditions.

DISCUSSION

The most commonly used identification method when testing factorial invariance

has several serious weaknesses when researchers are not sure which items are

invariant or noninvariant. An alternative identification method is to form the

baseline model by constraining all loadings to be invariant, fixing the factor

variance of one group to unity. A potential problem with this alternative method
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is that we must rely on the MIs or other fit information to find noninvariant

variables, given the invariance of any variables not known by a theory. The

purpose of this study was to evaluate specification searches based on the MI for

accuracy in finding noninvariant variables in the study of partial invariance.

The most interesting feature of our results is the striking difference in the

performance of specification searches between the low and high frequency con-

ditions. In low frequency conditions, specification searches were quite successful

in detecting noninvariant variables. This performance got better as the loading

difference increased and sample size increased. In the high frequency condition,

however, the specification searches consistently failed to detect noninvariant

items, even though mixed pattern or nonproportionality of loadings improved

the performance to some degree.

The results of this study suggest that the proposed method can be accurate if

the set of studied variables includes more invariant variables than noninvariant

variables, or in the low frequency condition. The performance of the method

improved as sample size increased and as the loading difference between groups

increased. On the other hand, the proposed method would not work well when

more noninvariant variables are present than invariant variables, or the high

frequency condition. In this high frequency condition, the specification searches

based on the MI had difficulty in detecting noninvariant items and had specified

invariant items as noninvariant in most cases.

One possible explanation for the strikingly different results between the low

and high frequency conditions is that there might be a readjustment of scale in

the high frequency condition, as described in Appendix A. In the high frequency

condition, noninvariant items are the majority and invariant items are the minor-

ity, so the scale might be readjusted toward the majority of noninvariant items.

The invariant items then become noninvariant based on the new scale if the load-

ing differences are proportionally equal in a condition. Under this hypothesis,

the specification searches successfully detected the newly defined “noninvariant”

variables based on the adjusted scale. In this study, differences of loadings were

designed to be proportional to adjust for the impact of the absolute difference

as it varied across various loading sizes. An unfortunate consequence of this

proportionality, however, is that when the noninvariant loadings are in the ma-

jority, a reversal of invariance status is possible, as illustrated in Appendix A.

The increased performance of the searches in mixed design (but with still pro-

portional loadings) and nonproportionality of loading (but still in a nonmixed

pattern) conditions partially supports this reasoning.

The results for the RMSEA in the initial model reveal that small RMSEA

values are still consistent with misspecified levels of invariance. In most studied

conditions, the average estimates of RMSEA were small enough that many inves-

tigators would not introduce further modifications. This was even true in the large

loading difference condition, where the largest RMSEA averages were .058. In
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practice, many researchers would consider retaining models with RMSEA values

below .05, possibly leading to failures to detect group differences in loadings.

It seems clear that if specification searches for violations of metric invariance

are to be pursued, sole reliance on indexes such as the RMSEA can result in

Type II errors under conditions resembling those simulated here.

Limitations and Future Research

There were several limitations to this study that can be addressed in future

research. First, this study was limited to the single-factor case with two groups.

Although studies of factorial invariance often involve more than one factor and

more than two groups, this study aimed to show how this method would work

with the simplest case possible. If the method does not perform well under

simple conditions, it is unlikely to perform well in more complex cases. We

would expect that extending the method to more than two groups would add

to the number of possible steps needed to explore partial invariance, but would

not change the fundamental results found in the two-group case. The extension

to multiple factors is less clear, as the results would probably depend on the

structure of the additional factors. For example, models in which individual

measures are determined by multiple factors might raise difficulties not found

when all variables are determined by a single factor.

Second, this study covered the continuous variable case, but did not address

the case where observed variables are ordinal and highly discrete. Previous

research has shown that the detection of biased items is less successful with di-

chotomous items than continuous items (Oort, 1998). Appropriate factor models

for discrete ordinal items differ from those used in the continuous case (Millsap

& Tein, 2004). These models include new parameters (e.g., threshold parameters)

and often require large samples for effective use, depending on the choice of

estimation procedure. Separate studies of detection accuracy using these models

are required before we can have confidence in generalizing the current results

to the discrete ordinal case.

Third, the simulations reported here employed communality values that were

relatively low in all conditions. Low communalities are realistic when the mea-

sured variables are test or questionnaire items, for example. Higher communali-

ties might be expected when the measured variables are subtests or whole tests.

In unreported preliminary simulations with large communalities, we found that

the modification index strategy presented here achieved a much higher level of

accuracy than is found in the low communality conditions reported here. Future

studies might examine the high communality case more thoroughly.

Finally, this study focused on the detection of violations of invariance for

factor loadings only. Although violations of metric invariance are nearly always

of interest, it would be useful to explore the same set of questions in relation
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to tests of intercept invariance (i.e., strong factorial invariance). This type of in-

vestigation could be done under conditions of metric invariance or conditions of

partial metric invariance in which some loadings vary across groups. It would

also be useful to examine tests of partial invariance for unique variances, al-

though no confounds with constraints needed for identification will be present

for the unique variances.
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APPENDIX A

This appendix illustrates an indeterminacy in tests of pattern invariance in the

single-factor case when certain proportionality relations hold among the loadings

across groups.

In the single-factor case, let ƒ1 and ƒ2 denote factor loading vectors in the

first group and the second group, respectively. Suppose that the factor loading

vector in each group can be written

ƒ1 D

�

ƒ

ƒ11

�

and ƒ2 D

�

ƒ

D2ƒ11

�

; (A1)

where

ƒ D

2

6

6

4

œ1

œ2

�

œi

3

7

7

5

; ƒ11 D

2

6

6

4

œiC1

œiC2

�

œp

3

7

7

5

; and D2 D

2

6

6

4

’2 0 � 0

0 ’2 � 0

� � � �

0 0 � ’2

3

7

7

5

In Equation A1, the first i variables are invariant and the last .p � i/ variables

are noninvariant. The loadings of noninvariant items in the second group are

proportional with ’2 to those in the second group. Here ’2 is a scalar constant.

The factor loading vector for the second group in Equation A1 can be rewrit-

ten by

ƒ2 D Dƒ1; (A2)
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where

D D

�

I1 Z0

Z D2

�

D

�

I1 Z0

Z ’2I2

�

D ’2

�

’�1
2 I1 Z0

Z I2

�

; (A3)

and I1 is an i � i identity matrix, Z is an i � .p � I / zero matrix, Z0 is the

transpose of Z, and I2 is a .p � I / � .p � I / identity matrix.

Let †1 and †2 denote covariance matrices in the first group and the sec-

ond group, respectively. Then, the covariance matrix for the first group can be

specified as

†1 D ƒ1¥1ƒ0

1 C ‚1 (A4)

and the covariance matrix for the second group is

†2 D Dƒ1¥2ƒ0

1D C ‚2 (A5)

Equation A5 can be rewritten

†2 D ’2D�ƒ1¥2ƒ0

1D�’2 C ‚2; (A6)

where

D� D

�

’�1
2 I1 Z0

Z I2

�

And Equation A6 can be rewritten again,

†2 D D�ƒ1‚�

2ƒ0

1D� C ˆ2; (A7)

where

¥�

2 D ’2¥2’2 D ’2
2¥2

Finally, it is shown that the new loading vector in the second group,

D�ƒ1 D

�

’�1
2

ƒ

ƒ11

�

;

which indicates that the first i variables are noninvariant and the other .p � i/

variables are invariant. This is exactly reversed from starting point and illustrates

indeterminacy of detecting invariant and noninvariant variables in the single

factor case when the loadings of noninvariant items in one group are proportional

to those in the other group. Under these conditions, investigators could easily

be misled regarding which subset of variables has invariant loadings.

This result might explain a puzzling finding reported by Meade and Laut-

enschlager (2004). In this finding, within a partial invariance condition similar
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to our p D 6, high frequency condition, data were simulated to have invari-

ant factor variances across groups. The results showed poor detection of the

factor loading differences, but spurious detection of factor variance differences

across groups. The likely explanation for this result lies in the indeterminacy

described earlier. The noninvariant loadings were probably nearly proportional

across groups, permitting the type of reversal described earlier, along with a

rescaling of the factor variance in one group. This rescaling resulted in a group

difference in factor variance.

APPENDIX B

Appendix B contains the more detailed results for the proportion of samples

having different numbers of true (NT) and false detections (NF).

TABLE B1

Six Variables With Low Frequency

N D 200 N D 500

NF NF

NT 0 1 2 3 4 Total 0 1 2 3 4 Total

Small Loading Difference

0 .67 .12 .01 .00 .00 .80 .39 .19 .03 .00 .00 .61

1 .17 .03 .00 .00 .00 .20 .26 .02 .00 .00 .00 .28

2 .00 .00 .00 .00 .00 .00 .10 .01 .00 .00 .00 .11

Total .84 .15 .01 .00 .00 1.00 .75 .22 .03 .00 .00 1.00

Medium Loading Difference

0 .23 .15 .02 .00 .00 .40 .07 .04 .02 .01 .00 .14

1 .34 .11 .00 .00 .00 .45 .14 .05 .01 .00 .00 .20

2 .12 .03 .00 .00 .00 .15 .55 .11 .00 .00 .00 .66

Total .69 .29 .02 .00 .00 1.00 .76 .20 .03 .01 .00 1.00

Large Loading Difference

0 .03 .01 .04 .02 .00 .10 .00 .00 .00 .01 .00 .01

1 .16 .04 .00 .00 .00 .20 .01 .00 .00 .00 .00 .01

2 .65 .05 .00 .00 .00 .70 .83 .14 .01 .00 .00 .98

Total .84 .10 .04 .02 .00 1.00 .84 .14 .01 .01 .00 1.00

Note. The possible maximum number of true detections was 2 and the possible maximum

number of false detections was 4 in this case.
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TABLE B2

Twelve Variables With Low Frequency

N D 200 N D 500

NF NF

NT 0 1 2 3 4 5 Total 0 1 2 3 Total

Small Loading Difference

0 .23 .27 .09 .02 .00 .00 .61 .19 .11 .09 .06 .45

1 .19 .07 .02 .00 .00 .00 .28 .20 .07 .05 .01 .33

2 .07 .02 .00 .00 .00 .00 .09 .10 .02 .00 .00 .12

3 .02 .00 .00 .00 .00 .00 .02 .09 .01 .00 .00 .10

4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Total .51 .36 .11 .02 .00 .00 1.00 .58 .21 .14 .07 1.00

Medium Loading Difference

0 .03 .03 .02 .01 .01 .01 .11 .00 .00 .00 .00 .00

1 .14 .09 .02 .01 .01 .00 .27 .00 .02 .01 .01 .04

2 .19 .06 .03 .01 .00 .00 .29 .01 .00 .00 .00 .01

3 .16 .07 .01 .00 .00 .00 .24 .10 .04 .01 .00 .15

4 .08 .00 .01 .00 .00 .00 .09 .56 .22 .02 .00 .80

Total .60 .25 .09 .03 .02 .01 1.00 .67 .28 .04 .01 1.00

Large Loading Difference

0 .00 .01 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00

1 .00 .00 .01 .01 .00 .00 .02 .00 .00 .00 .00 .00

2 .03 .02 .03 .02 .00 .00 .10 .00 .00 .00 .00 .00

3 .18 .05 .02 .00 .00 .00 .25 .00 .00 .00 .00 .00

4 .41 .19 .02 .00 .00 .00 .62 .61 .33 .03 .03 1.00

Total .62 .27 .08 .03 .00 .00 1.00 .61 .33 .03 .03 1.00

Note. The possible maximum number of true detections was 4 and the possible maximum

number of false detections was 8 in this case. NF greater than 5 did not have any case in N D 200

and NF greater than 3 did not have any case in N D 500, so those conditions are not shown in the

table to save space.
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TABLE B3

Six Variables With High Frequency

N D 200 N D 500

NF NF

NT 0 1 2 Total 0 1 2 Total

Small Loading Difference

0 .63 .17 .00 .80 .49 .22 .06 .77

1 .15 .01 .00 .16 .19 .01 .00 .20

2 .04 .00 .00 .04 .03 .00 .00 .03

3 .00 .00 .00 .00 .00 .00 .00 .00

4 .00 .00 .00 .00 .00 .00 .00 .00

Total .82 .18 .00 1.00 .71 .23 .06 1.00

Medium Loading Difference

0 .19 .24 .27 .70 .03 .09 .58 .70

1 .15 .06 .03 .24 .04 .08 .13 .25

2 .05 .01 .00 .06 .04 .00 .00 .04

3 .00 .00 .00 .00 .01 .00 .00 .01

4 .00 .00 .00 .00 .00 .00 .00 .00

Total .39 .31 .30 1.00 .12 .17 .71 1.00

Large Loading Difference

0 .02 .07 .54 .63 .00 .00 .67 .67

1 .03 .04 .13 .20 .00 .01 .28 .29

2 .08 .03 .01 .12 .00 .00 .01 .01

3 .03 .00 .00 .03 .02 .00 .00 .02

4 .02 .00 .00 .02 .01 .00 .00 .01

Total .18 .14 .68 1.00 .03 .01 .96 1.00

Mixed Pattern of Loadings (N D 500) Nonproportional Loadings (N D 500)

0 .00 .00 .00 .00 .00 .00 .00 .00

1 .00 .00 .00 .00 .01 .02 .25 .28

2 .14 .22 .21 .57 .08 .17 .20 .45

3 .16 .01 .00 .17 .08 .03 .00 .11

4 .26 .00 .00 .26 .16 .00 .00 .16

Total .56 .23 .21 1.00 .33 .22 .45 1.00

Note. The possible maximum number of true detections was 4 and the possible maximum

number of false detections was 2 in this case.
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TABLE B4

Twelve Variables With High Frequency

N D 200 N D 500

NF NF

NT 0 1 2 3 4 Total 0 1 2 3 4 Total

Small Loading Difference

0 .28 .16 .04 .02 .00 .50 .14 .13 .08 .07 .02 .44

1 .23 .10 .05 .00 .00 .38 .23 .09 .08 .01 .02 .43

2 .09 .01 .00 .00 .00 .10 .08 .01 .00 .00 .01 .10

3 .01 .00 .00 .00 .00 .01 .02 .00 .00 .00 .00 .02

4 .01 .00 .00 .00 .00 .01 .00 .01 .00 .00 .00 .01

5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

6 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

7 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

8 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Total .62 .27 .09 .02 .00 1.00 .47 .24 .16 .08 .05 1.00

Medium Loading Difference

0 .01 .05 .16 .08 .11 .41 .00 .00 .00 .07 .45 .52

1 .06 .08 .08 .08 .03 .33 .00 .00 .04 .05 .26 .35

2 .05 .09 .02 .00 .02 .18 .00 .01 .00 .02 .06 .09

3 .04 .01 .00 .00 .00 .05 .00 .00 .01 .01 .00 .02

4 .02 .00 .00 .00 .00 .02 .00 .01 .00 .00 .00 .01

5 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .01

6 .01 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00

7 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

8 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Total .19 .23 .26 .16 .16 1.00 .00 .03 .05 .15 .77 1.00

Large Loading Difference

0 .00 .00 .00 .03 .46 .49 .00 .00 .00 .00 .48 .48

1 .00 .00 .00 .03 .29 .32 .00 .00 .00 .00 .34 .34

2 .00 .01 .03 .03 .06 .13 .00 .00 .00 .00 .15 .15

3 .00 .01 .00 .03 .00 .04 .00 .00 .00 .02 .00 .02

4 .01 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00

5 .01 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00

6 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

7 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00 .01

8 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Total .02 .02 .03 .12 .71 1.00 .01 .00 .00 .02 .97 1.00

Note. The possible maximum number of true detections was 8 and the possible maximum

number of false detections was 4 in this case.




