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In applications of covariance structure modeling in which an initial model does not fit sample data
well, it has become common practice to modify that model to improve its fit. Because this process
is data driven, it is inherently susceptible to capitalization on chance characteristics of the data,
thus raising the question of whether model modifications generalize to other samples or to the
population. This issue is discussed in detail and is explored empirically through sampling studies
using 2 large sets of data. Results demonstrate that over repeated samples, model modifications
may be very inconsistent and cross-validation results may behave erratically. These findings lead to
skepticism about generalizability of models resulting from data-driven modifications of an initial
model. The use of alternative a priori models is recommended as a preferred strategy.

During the past 10 to 15 years, covariance structure model-
ing (CSM) has become a widely used and important quantita-
tive method in psychology, as well as in many other fields. We
examine one particular commonly used procedure in CSM: the
process of modifying models. In applications of CSM, re-
searchers typically begin with one or more initial models and
use a computer program such as LISREL (Joreskog & Sorbom,
1988) or EQS (Bentler, 1989) to fit those models to sample data
and obtain estimates of model parameters. If the fit of an initial
model is considered inadequate, it has become common prac-
tice to modify the model so as to improve its fit to the data. This
process, sometimes called a specification search (Kaplan, 1988;
Leamer, 1978; Long, 1983; MacCallum, 1986), usually involves
adding one or more parameters to the model in such a way as to
improve goodness of fit maximally. The resulting modified
model is then interpreted and offered as a good-fitting explana-
tion of the relations among the measured and latent variables.

We wish to examine some fundamental issues involved in the
specification search process. One issue concerns the consis-
tency of model modifications over repeated samples. That is, if
a specification search were conducted using the same initial
model on different samples from the same population, how
consistent would the specific model modifications be from
sample to sample? (We use the term stability to refer to this
notion of consistency of model modifications across repeated
samples) A second issue involves cross-validation of modified
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models. When a model is modified on the basis of results from
a particular sample, how well will that modified model fit an
independent sample from the same population? More generally,
how well do models arising from specification searches general-
ize to the entire population? Clearly, these questions have im-
portant implications with respect to the validity of modified
models. If model modifications are unstable, do not cross-vali-
date well, and do not generalize to the population, researchers
can have little confidence in the validity of models arising from
specification searches.

We discuss the basis for these concerns and review published
applications of CSM using specification searches. Using two
large sets of empirical data, we investigate how well modified
models generalize to other samples and to the population. Fi-
nally, we discuss implications of our results for the evaluation of
models produced by specification searches in empirical appli-
cations of CSM.

Capitalization on Chance in Specification Searches

A desirable outcome in a CSM analysis is to find that the
model under investigation fits well, that it cannot be simplified
substantially without significant loss of overall fit, and that its
fit cannot be improved to any great extent by making the model
more complex. Under such circumstances, the model could be
viewed as a plausible explanation of the relations among the
measured and latent variables in the population. It is critical to
understand that one does not seek or expect to find a model
that may be considered as precisely true or correct in the popu-
lation. No model fits real-world phenomena exactly. This fact
cannot be overcome by increasing sample size, improving mea-
surement precision, or modifying a model. The best one can
hope for is to show that a model provides a good approximation
to real-world phenomena, as represented in an observed set of
data.

When the initial model of interest does not satisfy this objec-
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tive, researchers often conduct a specification search so as to
alter the model to improve its fit to the data. As indicated
above, our concern regarding this process involves whether
such modified models generalize to other samples or to the
population. At the heart of this concern is the issue of capital-
ization on chance. A specification search must be recognized as
a data-driven process in that selected modifications of the ini-
tial model are based in part, if not entirely, on results obtained
from fitting the model to a particular sample. Therefore, the
specification search process is inherently susceptible to capi-
talization on chance in that idiosyncratic characteristics of the
sample may influence the particular modifications that are
performed. As emphasized by Cliff (1983), given the complex-
ity of covariance structure models and correlational data, it is
highly likely that in any particular case there will be model
modifications available that would substantially improve the
fit of the model to the data. However, such modifications may
merely fit chance characteristics of the original sample, rather
than represent aspects of the model that generalize to other
samples and to the population.

Whenever a researcher modifies a model using a strategy
that is in any way data driven, the issue of potential capitaliza-
tion on chance must be of concern and must be addressed in
some manner. This problem exists regardless of the type of
search strategy used and regardless of the nature of the initial
model and purpose of the research. Many different data-driven
search strategies can be defined, all of which are inherently
susceptible to this problem. For instance, alternative strategies
could define different priorities as to what aspects of a model
should be considered for modification first (e.g., measurement
vs. structural portions of the model), or might exclude certain
parameters from consideration for inclusion in a model (e.g.,
factor loadings fixed at zero in the initial model). Although
future studies might show that certain strategies are less suscep-
tible to capitalization on chance, it cannot be argued reason-
ably that a particular strategy that is in some way data driven is
immune to this problem.

Likewise, the issue of capitalization on chance is relevant
whether CSM is used in research that is primarily confirma-
tory or exploratory in nature. In a more exploratory study a
researcher may construct a rough model in a substantive area in
which little is known about the structure of relationships
among variables and then explore variations of that model. Ina
highly confirmatory study a researcher may use a model that is
well grounded in theory and prior research. Both cases repre-
sent legitimate uses of CSM, proceeding from exploratory
model development to the evaluation of well-founded models.
Considering the issue of specification searches, it is reasonable
that model modifications might be approached less conserva-
tively in more exploratory studies. That is, consideration of
model modifications that would enhance the fit of a model to a
given set of data would be a more natural aspect of research
involving exploratory model development. However, this fact
does not imply that modifications made to models in these
types of studies are any less susceptible to capitalization on
chance than in more confirmatory studies. Exploratory re-
search is a desirable and necessary part of the process of model
development. Nevertheless, the issue of capitalization on

chance must be of concern whenever data-driven model modifi-
cations are carried out, regardless of whether the research is
primarily confirmatory or exploratory in nature.

There are, of course, factors operating in empirical applica-
tions that heighten the concern about this problem. One of
these factors is sample size. When sample size is small, the
increased sampling variability in sample correlations or covari-
ances could have substantial effects on results of CSM analyses,
including the selection of model modifications. That is, the
particular modifications carried out in a specification search
could be quite unstable from sample to sample. This phenome-
non is explored in the sampling studies to be presented. An
important question involves what is an adequate sample size to
gain some protection against this problem. The general issue of
sample size in CSM is recognized to be a complex problem,
with necessary sample size being dependent on a number of
factors including the complexity of the model. In the context of
specification searches, results presented by MacCallum (1986)
show uniformly poor outcomes of searches that were based on
sample sizes of 100 and only mediocre success when sample size
was 300. We present results showing that the problem of capi-
talization on chance in specification searches may be quite se-
vere even in samples of 300-400 cases and may have some
impact even when sample size is quite large (e.g., 1,200 cases).
Thus, in most empirical applications, sample sizes may not be
sufficiently large to give much protection against this problem.

Another factor that affects the degree of concern about capi-
talization on chance in specification searches involves the num-
ber of modifications made to an initial model. Modifications
are often made sequentially, with each successive modification
selected so as to provide maximum improvement in overall
model fit. Thus, the early modifications correct for more severe
aspects of lack of fit, and later modifications correct for smaller
sources of lack of fit. In reasonably large samples, large discrep-
ancies between the model and the data would tend to be more
stable, and smaller discrepancies would tend to be less stable.
An important implication of this phenomenon is that searches
characterized by relatively more modifications are likely to be
more strongly influenced by chance characteristics of the data.
Supportive evidence for this claim is provided by MacCallum
(1986), who demonstrated that longer searches have little
chance of correctly identifying model misspecifications.

A third factor that affects the degree of concern about capi-
talization on chance is the interpretability of model modifica-
tions. The methodological literature in CSM is replete with
warnings that modifications must be substantively justified
e.g., Joreskog & Sorbom, 1988; Long, 1983; MacCallum, 1986,
Saris & Stronkhorst, 1984; Sérbom, 1989). If a parameter is to
be added to a model, the researcher must be able to provide a
clear substantive interpretation of that parameter. This recom-
mendation is intended to prevent the addition of meaningless
parameters to a model simply for the purpose of improving
goodness of fit to a particular sample.

Unfortunately, this issue of interpretability is problematic in
practice. Even when substantive justifications for model modifi-
cations are offered, one may be concerned as to the rigor and
validity of those justifications. Steiger (1990) expresses strong
concern about this problem as follows: “What percentage of
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researchers would find themselves unable to think up a ‘theoret-
ical justification’ for freeing a parameter? In the absence of
empirical information to the contrary, | assume that the answer

. .18 ‘near zero’ ” (p. 175). Even more troubling is the fact, to
be supported later, that in the vast majority of empirical studies
little or no substantive interpretation is offered for model modi-
fications. In this context, there appears to be a belief that it is
acceptable to add parameters to a model so as to improve the fit
of the model to an adequate level, without the need to attach
substantive meaning to these parameters. Such parameters
have been termed wastebasket parameters (e.g., Browne, 1982);
a common example is the covariances among error terms. Our
view is that users of such an approach are sometimes trying to
have it both ways: They want a model that fits their data well,
but without the responsibility of interpreting the changes made
to achieve that fit. Clearly such an approach must raise serious
concerns about the possibility that such modifications are
merely capitalizing on chance characteristics of the data. A
requirement that a clear and well-founded interpretation be
offered for any modification would provide some protection
against this problem.

However, such a requirement raises an important question: If
a model modification is highly interpretable, then why was it
not represented in the initial model? In response, one cannot
rule out the possibility that interpretable modifications to a
model may occur to a researcher only in the process of evaluat-
ing an analysis of that model in a particular sample. This may
be the case even in highly confirmatory studies. In more explor-
atory studies a researcher may have a variety of ideas about
potential relationships among variables and may wish to use
the specification search process to evaluate what relationships
are supported by the data. In any case, however, it is clear that
model modifications should be supported by clear substantive
interpretation. Given the difficulties associated with this issue,
it is worthwhile to consider an alternative strategy: constructing
and evaluating alternative a priori models. This strategy is dis-
cussed and strongly endorsed in the final section of this article.

We have discussed three factors that are directly relevant to
the phenomenon of capitalization on chance in specification
searches: sample size, the number of model modifications, and
the interpretability of those modifications. The worst circum-
stance would involve a search conducted on a small sample and
introducing many modifications that are given little or no inter-
pretation. In such a case, there must be considerable skepticism
about the generalizability of the resulting model beyond the
sample at hand. However, even under the best circumstances,
when sample size is large and only one or two interpretable
modifications are made, one can neither ignore nor avoid the
possibility that the modifications were the result of chance
characteristics of the sample. As stated earlier, whenever model
modifications are made using a data-driven process, this con-
cern must be addressed.

There are two primary ways to confront this problem. One
way would be to provide evidence that the model modifications
and final model generalize beyond the sample at hand. Such
evidence could be provided by some type of cross-validation
analysis. In the methodological literature on CSM, researchers
are routinely warned that modified models must be cross-vali-

dated (c.g., Bentler, 1980; Bollen, 1989; Breckler, 1990; Cliff,
1983; Hayduk, 1987; MacCallum, 1986; Saris & Stronkhorst,
1984; S6rbom, 1989). However, our review of published appli-
cations shows that this advice is rarely followed in practice. The
sampling studies to be presented later include results of cross-
validation analyses. On the basis of those findings, our recom-
mendation is that cross-validation of a model resulting from a
specification search should involve parallel searches conducted
on independent samples. That is, the initial model should be fit
to independent samples, and the model modification process
should be conducted in both samples. Specific modifications
can then be evaluated for consistency between samples, and
final modified models arising in each sample can be fit to the
other sample. Cudeck and Browne (1983) developed a two-sam-
ple cross-validation index that can be used for this purpose.
Results of such analyses would provide important information
about stability and cross-validity of model modifications.

If sample size or other factors make a cross-validation analy-
sis impractical, researchers must clearly state the limitations
and the need for further evaluation of models produced by
specification searches. Such a statement should include the
points (a) that the initial model was modified to improve its fit
to one sample, (b) that the generalizability of those modifica-
tions to other samples and to the population remains to be
determined, and (c) that the resulting model cannot be consid-
ered plausible until it is further evaluated using independent
samples. Such a statement may often be applicable in explor-
atory studies using CSM but should not be considered a “kiss of
death” that invalidates results of such studies. Rather, such a
statement is a simple and responsible acknowledgment that fur-
ther evaluation of models produced by specification searches is
necessary. In summary, it is inappropriate to evaluate a model
resulting from a specification search in a single sample as if it
has been validated and is a plausible explanation of relations
among measured and latent variables in the population.

Strategies for Specification Searches

An abundance of information is produced in a typical CSM
analysis, and model modifications are usually based on some
specific aspects of this information. A variety of general princi-
ples and strategies could be defined for conducting specifica-
tion searches, but a few simple approaches are commonly used.
Researchers using LISREL (Jéreskog and Sorbom, 1988) al-
most always focus on modification indexes (Sérbom, 1989),
which are provided for each model parameter that is assigned a
fixed numerical value in the initial model. The value of a given
modification index indicates the minimum magnitude by
which the overall likelihood ratio x? value for the model would
decrease if the corresponding parameter were freed. Re-
searchers often use this information to conduct a sequence of
model modifications. At each step, a parameter is freed so as to
produce the largest improvement in fit, and the process is con-
tinued until adequate fit is achieved. We refer to this widely
used approach as sequential model modification.

Whereas LISREL remains the most widely used software for
CSM, other programs are available that provide other types of
information that can be used for model modification. For in-
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stance, Bentler’s (1989) EQS program provides the Lagrange
multiplier test (Lee & Bentler, 1980; Satorra, 1989) for testing
whether a set of fixed parameters, if freed, would significantly
improve the fit of the model. Researchers might also wish to
consider measures of expected parameter change, as recom-
mended by Kaplan (1990), in determining whether to free a
fixed parameter.

Besides the variety of information that can be used to deter-
mine optimal model modifications, there are also a variety of
strategies available for selecting model modifications. For in-
stance, a researcher may establish priorities with regard to the
sequence in which types of parameters are considered for addi-
tion to the model. One such approach (Anderson & Gerbing,
1982; Silvia & MacCallum, 1988) is based on the notion that
new parameters should be added to the measurement model
first, then to the structural model. Other strategies might call
for the exclusion of certain parameters from consideration for
addition to the model. For example, one might argue that the
measurement model should be considered fixed, thus disallow-
ing any new parameters representing effects of latent variables
on indicators.

We wish to make several points about alternative strategies
for model modification. First, each strategy will have limita-
tions in terms of its capability for diagnosing and correcting
misspecifications. Some types of misspecifications (e.g., non-
linear influences among variables) would be quite difficult to
diagnose by conventional procedures. Second, any strategy that
is in any way data driven is susceptible to problems arising from
capitalization on chance. Regardless of the particular informa-
tion and strategy used, specification searches can almost al-
ways be conducted so as to achieve an adequate fit through a
sufficient number of modifications of the initial model. We do
not address the question of whether some search strategies pro-
duce modified models with better stability and cross-validity
than models produced by other strategies. Rather, we argue that
stability and cross-validity are critical issues whenever data-
driven model modifications are conducted, regardless of strat-
egy. We present results of an investigation of one particular
strategy: sequential model modification. We focus on this ap-
proach because it is widely recognized due to its availability
through LISREL and widely used in published applications.

Review of Published Applications

It is important to consider how the issues we have discussed
are reflected or addressed in published applications of CSM.
Breckler (1990) reviewed 72 applications of CSM in four jour-
nals (Journal of Personality and Social Psychology, Journal of
Experimental Social Psychology, Personality and Social Psychol-
ogy Bulletin, and Psychological Review) for the period 1977-
1987. To augment Breckler’s data, we identified an additional
28 applications of CSM published in the Journal of Applied
Psychology during the period 1988-1990, yielding a total of 100
applications. A list of the 72 papers considered by Breckler can
be found in an appendix to his article; a list of the 28 additional
papers considered presently can be obtained from Robert C.
MacCallum by request. Keep in mind that there are many more
applications published in other psychology journals and jour-

nals in other fields such as sociology, political science, market-
ing, and education.

Of the 100 studies examined, 37 contained acknowledgments
of having modified an initial model to improve its fit to the
data. A number of these applications were based on relatively
small samples. Eleven of the 37 studies in which specification
searches were conducted were based on samples of less than
200, and 7 of those 11 were based on samples of less than 125.
Although such samples may not seem especially small from an
experimental perspective, they may be too small to obtain
stable results from CSM analyses and specification searches, as
discussed earlier.

A second concern regarding these published applications is
the fact that many searches involved substantial numbers of
modifications of initial models. It is not unusual for researchers
to incorporate a large number of new parameters into a model
to improve its fit to an adequate level. For example, in a confir-
matory factor analysis of measures of job characteristics, Ku-
lik, Oldham, and Langer (1988) freed 8 parameters on the basis
of modification indexes. Farkas and Tetrick (1989) freed 11
parameters in each of two analyses in their study of models of
turnover decisions. Newcomb, Huba, and Bentler (1986) freed
37 covariances among error terms to improve fit of a model of
sexual and dating behaviors. We found many cases where 5 or
more parameters were added to a model through a specifica-
tion search. As discussed earlier, concerns about capitalization
on chance and lack of generalizability must be heightened as
the number of model modifications increases.

A third factor previously discussed involves the interpretabil-
ity of model modifications. Of the 37 applications examined,
31 contained modifications made strictly on the basis of the
data (almost always using modification indexes or closely re-
lated statistics). Thus, only 6 of the 37 provided a justification
of modifications on substantive grounds. These findings indi-
cate that the warning regarding substantive justification of
modifications is routinely ignored. Furthermore, we found al-
most no evidence of researchers declining to make a specific
modification because of lack of interpretability. In fact, we
found only one study (Meyer & Gellatly, 1988) in which it was
stated that a model modification was not made because it
would not make sense theoretically to do so.

The picture with regard to cross-validation of modified mod-
els is gloomy also. Of the 37 studies that acknowledged model
modifications, we found only 4 that provided some type of
information about cross-validation. Two of these studies (Reis-
enzein, 1986; Tanaka & Huba, 1984) fit a model resulting from
a specification search to a new sample. Two other studies (Hin-
kin & Schriesheim, 1989; Schriesheim & Hinkin, 1990) used
confirmatory factor analysis in one sample to aid in selecting
items for a scale, then validated the resulting item set and
model in an independent sample. The details of these analyses
are not critical here. What is important is that cross-validation
of modified models is rarely done in practice. Given the clear
risk of capitalization on chance, coupled with the usual neglect
of substantive justification of modifications, the lack of infor-
mation about cross-validity raises serious concerns about the
generalizability of modified models.

To summarize, our examination of 37 published applications
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of CSM involving specification searches demonstrates that the
cautions and warnings regarding model modification are rou-
tinely ignored or overlooked. Model modification in practice is
usually done with no substantive justification and no cross-
validation, often involves a substantial number of modifica-
tions, and is often based on samples that may be too small for
such analyses. Every published application we examined could
be faulted on at least two of these counts.

Nevertheless, model modification in this manner seems to
have become accepted practice. We consider this to be an unfor-
tunate state of affairs, representing a dangerous and misleading
methodological trend. Our objective is to shed light on some
serious negative consequences of common approaches to
model modification. Our study of this general problem focused
on two issues. The first involves the degree to which model
modifications are consistent across repeated samples. The sec-
ond involves the degree to which models modified to fit one
sample will fit an independent sample. We investigated how
these characteristics of stability and cross-validity are affected
by sample size. Our study of these issues was conducted using
two large sets of empirical data.

Study 1

The initial model used in the analyses in Study | was a model
of employee behavioral and cognitive responses to job attitudes
and perceptions of job conditions. The model was in part an
adaptation of the heuristic model of employee responses to
affect from Hulin, Roznowski, and Hachiya (1985). A general
hypothesis of the Hulin et al. model is that work role dissatisfac-
tion motivates individuals to do something to alleviate the dis-
satisfaction. The three independent latent variables in the
model were employee satisfaction toward pay, employee satisfac-
tion toward work, and perceptions of job characteristics. The
four dependent latent variables were withdrawal, citizenship,
change-oriented behavior syndromes or behavioral “families,”
and cognitions/intentions regarding physical withdrawal from
the organization in the future. The latent variables were de-
fined as follows:

Pay satisfaction: Attitude toward the individual’s pay and
the pay system in the organization.

Work satisfaction: Attitude toward the individual’s work.

Job conditions: Individual perceptions of the physical work-
ing conditions in the workplace and job environment.

Withdrawal: A general syndrome reflecting psychological
withdrawal or passive withdrawal of the individual from the
workplace. Behaviors intended to distance the employee from
the organization or the work itself are represented by this vari-
able (Rosse & Miller, 1984; Roznowski & Hulin, 1991).

Citizenship: A general syndrome of individual behavior re-
flecting positive, pro-organizational acts such as volunteering
and extra-role behaviors (C. A. Smith, Organ, & Near, 1983).

Change: A broad-based behavioral syndrome reflecting in-
dividual behaviors oriented toward changing the work situation
to improve work conditions, the job itself, or the workplace.

Withdrawal cognitions: A general measure reflecting the em-
ployee’s thoughts and intentions about future withdrawal from

the organization in the form of quitting, being late, being ab-
sent, or transferring.

A relatively complex model was constructed to represent re-
lations among these latent variables. A path diagram depicting
the model, including a representation of multiple indicators for
each latent variable, is shown in Figure 1. The relations to be
tested were chosen to represent various hypotheses from the
attitude and behavior literature relevant to individuals in com-
plex organizational settings. First, the three independent latent
variables (work satisfaction, pay satisfaction, and job percep-
tions) were allowed to correlate. Work satisfaction was hypothe-
sized to influence all four behavior syndromes {(change, citizen-
ship, withdrawal, and cognitions). Theoretical justification for
these links is extensive (Hulin, 1991; Hulin et al., 1985; Rosse &
Miller, 1984). Perceptions of job conditions were hypothesized
to influence only the most extreme form of behavior (cogni-
tions/intentions to withdraw physically from the organization).
Pay satisfaction was hypothesized to lead to both withdrawal
behaviors and cognitions about future withdrawal. Finally, the
citizenship behavior latent variable was hypothesized to influ-
ence change behaviors. Likewise, the withdrawal latent variable
was hypothesized to lead to cognitions about withdrawal in the
future.

The indicators for the latent variables were obtained from a
large set of self-report measures assessed through question-
naire. The sample consisted of 3,694 employees of two large
hospitals located in the Midwest. The two organizations were
similar in size, employee demographic makeup, unionization,
and other features.

All latent variables had multiple indicators. Each indicator
was a parcel, which is a simple unit-weighted sum of a number
of items. The use of parcels served to reduce the total number of
items to a manageable level and to provide indicators with
higher reliability than that of single items. Items for a particular
indicator parcel were chosen so as to balance content as well as
psychometric characteristics of the items across indicators. At-
titude measures were taken from the Job Descriptive Index
(JDI; P. C. Smith, Kendall, & Hulin, 1969). For the two satisfac-
tion latent variables (work and pay), the item-grouping proce-
dure used by Drasgow and Kanfer (1985) was used to obtain
three indicators each for work and pay satisfaction. The work
satisfaction indicator parcels each contained five JDI work
items; the pay indicator parcels each contained three JDI pay
items. Items suggested by Roznowski (1989) were included in
place of a few JDI items with poor measurement properties.
The two indicators for the job perceptions variable were con-
structed by summing, respectively, four items assessing percep-
tions of job conditions and eight items assessing perceptions of
the physical environment and equipment.

A variety of self-report items was used for the dependent
variables to assess a broad range of employee behaviors from
very negative to less severe behaviors to positive, pro-organiza-
tional types of acts (Rosse, 1983). Eighteen items reflecting
passive or psychological withdrawal were combined to form
three parcels to serve as the indicators of the withdrawal latent
variable. Examples of these items include “doing poor quality
work,” “arguing with co-workers,” and “refusing to do assigned
work.” Twelve pro-organizational acts were used to define three
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Figure 1.

parcels to serve as indicators of the citizenship latent variable.
Such items contained content reflecting positive acts commit-
ted by employees, such as “volunteering to do extra work” and
“giving encouragement to new employees.” Next, parcels re-
flecting change-oriented behaviors were constructed following
notions from Hulin et al. (1985). Three indicators each contain-
ing three change-oriented behaviors were used to define the
change latent variable. Examples of these behaviors include “fil-
ing a grievance” and “making suggestions for needed change”
Finally, four indicators representing general cognitions and in-
tentions about future withdrawal from the organization were
created. These four parcels consisted, respectively, of cognitions
and intentions about quitting, being late, being absent, or trans-
ferring out of the workplace.

The data matrix for the full sample consisted of scores on a
total of 21 manifest variables for the entire sample of 3,694
persons. Both organizations were combined, because we de-
cided that the employees in the two hospitals were similar
enough to be a single population.

Method

This initial model and data set were used in a sampling study to
investigate stability and cross-validity of model modifications. We
used eight levels of sample size: 100, 150, 200, 250, 325, 400, 800, and
1,200. These levels were selected on the basis of () our review of pub-

Path diagram of model of employee responses to job attitudes
and perceptions of job conditions.

lished applications of CSM, which showed sample sizes ranging from
very small to very large, but usually between 100 and 350 and (b) our
pilot studies, which showed a need to represent a wide range of sample
sizes to reveal important phenomena about the issues under study.
For each level of sample size, 10 pairs of random samples were drawn
from the total sample of 3,694. Within each pair of samples, we desig-
nated one sample as the calibration sample (sample ) and the other as
the cross-validation sample (sample b). Sample covariance matrices S,
and S, were obtained. The initial model was then fit to S,, using the
maximum likelihood method provided in LISREL 7.16 (Joreskog &
Sorbom, 1988). Various information about goodness of fit of the initial
model was recorded. For purposes of the present study, we used two
descriptive indexes of fit. The first was the nonnormed fit index
(NNFTI; Bentler & Bonett, 1980), which is a generalization of the
Tucker-Lewis coefficient developed for maximum likelihood factor
analysis (Tucker & Lewis, 1973). The second was Steiger’s (1989) root-
mean-square error of approximation, or RMSEA. This measure is a
standardized root-mean-square residual, corrected for model com-
plexity. It provides an estimate of badness of fit in the population.
After the initial model was fit to a given calibration sample covari-
ance matrix, a sequence of modifications of the model was carried out
using modification indexes provided by LISREL. At each step of the
modification process, the fixed parameter with the largest modifica-
tion index was freed. We are aware that this mechanical process vio-
lates the often repeated warning that model modifications must be
substantively justified. (Note that an attempt was made to prevent
meaningless modifications of the initial model. Before carrying out
any specification searches, fixed parameters were identified that
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would not be freed, because doing so would be uninterpretable. How-
ever, no search produced a modification index that indicated that any
of these parameters should be freed. Therefore, the net effect was a
search procedure that was essentially mechanical) Thus, we used a
specification search process that we believe is representative of proce-
dures often used in practice, namely, a mechanical approach without
rigorous justification for specific modifications. In each calibration
sample, a sequence of four modifications was conducted. Results of
pilot work indicated that a four-step search was adequate to reveal
relevant phenomena. Additional steps served little purpose.

After each modification in each search, the modified model was
refit to the calibration sample covariance matrix, S,. Each specific
modification was recorded, and measures of goodness of fit of each
modified model to S, were calculated. Obviously, goodness of fit to the
calibration sample would improve with each modification.

For the initial model and each modified model, two cross-validation
indexes were calculated. The first was the two-sample index proposed
by Cudeck and Browne (1983). When a particular model, k, is fitto S,,
one can obtain the reconstructed covariance matrix, 53/4.:- GivenS,, the
value of the maximum likelihood fitting function, F(S,; ﬁk,a) is mini-
mized. This function measures the correspondence between S, and
ﬁk,,, and parameters are estimated so that the resulting ﬁk‘a yields the
minimum value of the fitting function. The two-sample cross-valida-
tion index is defined as the value of the fitting function measuring the
correspondence between 2,,, and the covariance matrix for the cross-
validation sample, S,, namely, F(S,; ﬁ,qa). We refer to this index as
CV2, indicating a two-sample cross-validation index. Smaller values of
CV?2 indicate better cross-validity. Logistically, this index could be
obtained by fitting model k to S,, where all parameters are fixed at
values obtained when model k is fit to S, (though this was not the
computational method used in the present study). This approach
corresponds to the tight method of cross-validation mentioned by
Bentler (1980).

To overcome the problem of needing two samples to obtain CV2,
Browne and Cudeck (1989) proposed a single-sample cross-validation
index. They developed the following measure:

CVi=FS,;Zu) +2q/n—p—2) )

where g, is the number of free parameters in model k, p is the number
of measured variables, and » is sample size. Browne and Cudeck show
that CV1 provides a close approximation to values of CV2.

For each pair of samples drawn, we calculated CV1 and CV2 for the
initial model and each of the four modified models. We also calculated
the value of CV2 for each model using the covariance matrix for the
total sample, S,, in place of S,. This index provided a measure of how
well a solution obtained from a calibration sample would fit the total
sample. Results obtained by computing these various cross-validation
indexes allowed for the evaluation of cross-validity of models as they
were modified to improve fit to the calibration sample. If the succes-
sively modified models cross-validate more poorly, then the cross-vali-
dation indexes should increase from one model to the next. Conversely,
if cross-validation improves as modifications are carried out, then the
indexes should decrease from one model to the next. Note that we used
these indexes in a context different from that originally intended by
Cudeck and Browne (1983) and Browne and Cudeck (1989). Their con-
text involved assessing cross-validity of alternative a priori models.
They urged researchers to use cross-validation indexes to evaluate
which of a set of alternative a priori models would generalize best to
other samples. We used the same indexes to evaluate relative cross-vali-
dity of alternative models produced by modification of an initial
model. Our use of these indexes in this context produced one interest-
ing phenomenon regarding CV1, which is discussed in the Results
section.

To summarize the method used in Study 1, we defined an initial
model and conducted a sampling study of the model modification
process. For each of eight different levels of n, we drew 10 pairs of
samples, each pair consisting of a calibration sample and a cross-vali-
dation sample. The initial model was fit to each of the 80 calibration
samples and was then modified four times, each modification involv-
ing freeing the parameter with the largest modification index. Each
specific modification was recorded. For the initial model and each
modified model, we obtained goodness-of-fit measures, as well as
two-sample and single-sample cross-validation indexes. Finally, the
same procedure was followed for the full sample of 7= 3,694. All of the
same information was obtained for this sample, except for the two-
sample cross-validation index. Thus, a total of 81 specification
searches was conducted (80 subsamples, plus the total sample).

Results

Consider first the goodness of fit of the initial and modified
models in the calibration samples. Tables 1 and 2 show sum-
mary statistics for the NNFI and RMSEA fit measures, respec-
tively. Each table shows statistics for the 10 replications at each
sample size, as well as for the full sample, for the fit of the initial
model and the final model (i.e., after four modifications).

The mean values of the fit indexes for the initial model show
that the initial model did not fit badly but was clearly in need of
improvement. The mean values of fit indexes for the final
model show that definite improvement in fit was achieved and
that the final models fit the calibration sample moderately weil.
This pattern is fairly typical of applications using specification
searches. That is, the fit of the initial model is inadequate, and
modifications are conducted resulting in a final model that fits
the data reasonably well. An interesting and somewhat surpris-
ing result was that the means of the fit measures for the initial
model improved with sample size. This result was especially
surprising with regard to the NNFI index, because it is gener-
ally considered to be relatively independent of sample size (An-
derson & Gerbing, 1984; Balderjahn, 1988; Bollen, 1990;
Marsh, Balla, & McDonald, 1988). The effect of sample size on
mean NNFI for the initial model was quite pronounced. This
issue is tangential to the focus of the present study but probably
merits further investigation.

The range and standard deviations of the fit indexes in Tables
1 and 2 show that the fit of both the initial and final models was
quite unstable at small sample sizes and still somewhat unstable
even through moderately large sample sizes. For instance, note
the rather wide range in values of NNFI for the final models at
n =325 (874-932). These results indicate that the benefits of a
specification search, in terms of the fit of the final model, may
be quite dependent on matters of sampling unless 7 is quite
large. For instance, in the present study, if a specification search
were conducted on a sample of n = 325, a lucky investigator
might obtain a final model that fits quite well after a relatively
short search, but an unlucky investigator might have to conduct
a much longer search to achieve adequate fit.

Consider next the particular modifications made in each
specification search. Table 3 shows the sequence of parameters
freed in each of the 8 1 searches conducted. Parameters are indi-
cated in Table 3 using LISREL program designations. For every
modification in every search, the corresponding modification
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Table 1
Summary Statistics for NNFI for hnitial and Final Models
NNFI for initial model NNFI for final model
n High Low M SD High Low M SD
100 875 781 814 024 951 842 .888 .030
150 .850 .803 .830 015 922 .860 .894 .017
200 .890 834 .858 016 .946 .890 916 016
250 904 811 .856 .030 938 .882 911 .020
325 877 816 .849 .019 932 .874 910 016
400 .887 .834 .855 015 931 .898 915 011
800 .880 .832 .865 .014 933 903 921 .010
1,200 .887 857 .869 .009 930 909 921 .007
3,694 875 930

Note. NNFI = nonnormed fit index.

index had a value that was statistically significant at the .01
level, with almost all being significant at a much lower level.
Thus, the modifications shown in Table 3 represent statistically
significant steps in a search.

There are some striking results in Table 3. The specific modi-
fications made in each search were found to be highly inconsis-
tent across repeated samples, even in sample sizes as large as
400. In fact, although the modifications became more consis-
tent as » increased, they were not completely consistent across
repeated samples even at n = 1,200. The bottom row of entries
in Table 3 shows the four modifications made when a specifica-
tion search was conducted for the full sample. Considering the
sequence of modifications made in the subsamples, and ignor-
ing their order, note that at n = 1,200 only 6 of the 10 searches
resulted in the same four modifications as in the total sample.
For n = 800, this proportion was 4:10; for n = 400, 2:10; forn=
325, 1:10; and for n of 250 or less, none of the 40 searches
produced the same four modifications as did the search in the
full sample. Thus, modifications in subsamples were not found
to generalize well to the total sample, which can be thought of
as analogous to the population for present purposes. Another
indication of instability in model modifications can be seen by

counting the number of different parameters freed in the 10
searches at each sample size. Proceeding from n = 100 to n =
1,200, these numbers were as follows: 23,17, 20,15,15,12,10, 7.
By any criterion, Table 3 shows high inconsistency in model
modifications across repeated samples of even moderately
large size, as well as poor correspondence between modifica-
tions in samples and modifications in the population.

We next consider the behavior of the cross-validation indexes
for the initial and modified models. Because values of CV1 and
CV2 cannot be compared across different data sets, it would be
inappropriate to compute and compare mean values of these
indexes across replications within the various conditions. In-
stead, we examine the pattern of change in these indexes across
each sequence of model modifications. For the two-sample
cross-validation index, CV2, Table 4 shows the frequency of
increases and decreases, across the 10 replications, at each mod-
ification and each sample size. For example, for the 10 replica-
tions at # = 100, CV2 increased four times at the first modifica-
tion and decreased the other six times. The results in Table 4
show considerable instability in CV2 for sample sizes through
250. Though results for single samples are not shown in Table 4,
inspection of such results showed CV2 to behave quite errati-

Table 2
Summary Statistics for RMSEA Fit Index for Initial and Final Models
RMSEA for initial model RMSEA for final model
n High Low M SD High Low M SD
100 .097 .069 .086 .007 .081 .043 067 011
150 .089 .076 .082 .004 071 .055 .065 .005
200 .082 .066 .074 .005 .067 .047 057 .006
250 .085 .060 .074 .009 .068 .048 .058 .007
325 .083 .066 .076 .006 .069 .049 .058 .006
400 .080 .063 .074 005 .063 050 .057 .004
800 .079 .066 .071 004 .060 .050 .054 .003
1,200 074 064 070 .002 .057 .051 .054 .002
3,694 .070 053

Note. RMSEA = root-mean-square error of approximation.
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Table 3
Sequence of Model Modifications for Each Sample In Study 1

Sequence of modifications

n Rep 1 2 3
100 1 BE 41 LY 10t TE21
2 TE 11 10 TE 134 LY 92
3 LY 103 BE14 LY 92
4 LY 92 TE 13 10 TE 109
S LY 34 LY 72 LY 113
6 LY 123 BE 4 1 LY 72
7 LY 92 LX33 TD S 1
8 LY 92 LY 103 LY 113
9 LX 33 LY 113 LY 72
10 LY OS2 LX33 BE2 4
150 1 LYS2 TE9S LY 101
2 TE 1310 LY 92 TE 118
3 LY 92 BE 14 LY 123
4 LY 92 TES 4 TE 13 10
5 LY 63 LY 113 LY 72
6 TES 4 LY 123 TDS3
7 TE9 4 LY 113 LY G2
8 LY 92 TE9 4 LY 123
9 TE 13 10 LY 92 LY 72
10 TE9 4 LY 34 TE 13 10
200 1 LY 92 LY 113 LY 123
2 LY 113 LY 123 BE24
3 LY 92 LY 34 TE 13 10
4 LYS2 LX33 LY 133
5 TE84 LY92 TE 13 10
6 LY 34 LY 92 LY 123
7 TES9 4 LY 34 LX33
8 LY 92 TE 1110 LY 101
9 TE9 4 LY 71 TE 1311
10 TES94 TE 1310 LX33
250 1 TE94 LY 34 LY 41
2 PS31 LY 92 LY 113
3 LY 34 LY S92 LY 113
4 TE 1310 LYS2 LY 34
5 LYo2 LY 34 LY 41
6 LY 92 LY 123 LY 113
7 TE 13 10 LY 92 LX 13
8 TE 13 10 LY 92 TEG6 5
9 LY 113 LY S92 BE 24
10 LY 92 TE 13 10 BE 1 4
325 1 LY 92 LY 34 LY 113
2 LYS?2 LY 113 BE24
3 LY 34 TE9 4 LY 113
4 LY 92 LX33 LY 113
S LYS2 LY 113 PS31
6 LYS2 TE8 4 TE 12 10
7 LYS2 LY 123 LY 113
8 LY 113 LY 92 LY 61
9 LX33 LY 92 LY 113
10 LY S I LY 34 LY 113
400 { LY S2 LY 113 LY 123
2 LY S92 TE 1310 LY 34
3 LYOS2 TE 13 10 1LX33
4 LY 113 LY 34 LY 92
S LYS2 TE 1310 LX33
6 LY 113 LY 34 LY G2
7 LYS92 LY 34 TES 4
8 LY 113 Ly 123 LY 92
9 LYS2 BE24 TES 4
10 LY S92 LY 34 LY 113
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Table 3 (continued)
Sequence of modifications
n Rep 1 2 3 4
800 1 LY92 LY 34 LX33 LY 113
2 LY92 LY 34 LY 113 LY 123
3 LY92 LX33 LY 123 LY 113
4 LY 92 LY 34 LY 113 LY 123
5 LY92 BE 13 TE 1310 LX33
6 LY92 LY 113 LY 123 LX33
7 LYO92 LY 113 LY 123 TE94
8 LY92 LY 113 LY 123 LY 34
9 LY92 LY 34 LY 113 LY i23
10 LY92 LY 113 LY 123 LY41
1,200 1 LY92 LY 113 LY i23 LY 34
2 LY92 LY 34 LY 113 LY 123
3 LY S92 LY 113 LY 123 LY 34
4 LY92 LY 113 LY 123 LY 34
5 LY92 LY 34 LY 113 LY 123
6 TE94 TE 13 10 LY92 LY 34
7 LY 92 TE 13 10 LY 34 LX33
8 LYO92 LY 113 LY 123 LY 34
9 LYO92 TE 13 10 LY 34 LX33
10 LY92 TE 13 10 LY 34 LY 113
3,694 LYO92 LY34 LY 113 LY 123

Note. Parameter labels use matrix designations from Joreskog & Sorbom, 1988: BE = Beta, LX =
Lambda-X, LY = Lambda<, PS = Psi, TD = Theta-deita, TE = Theta-epsilon.

cally at low levels of », going up and down across the sequence
of modifications. This index behaved consistently only in sam-
ples of 800 or larger, where it improved steadily from step to
step in each specification search.

Cudeck and Browne (1983) recommend using CV2 to deter-
mine which of several models yields the best cross-validity. Ta-
ble 5 shows the frequency with which each model in the specifi-
cation search yielded the lowest value of CV2 at each sample
size. For instance, at n = 100, a model with one modification
yielded the lowest value of CV2 in 4 of the 10 replications ana-
lyzed. Note, however, that those 4 cases do not necessarily re-
sult in the same model. As seen in Table 1, the first modifica-

Table 4
Frequency of Increases and Decreases of Two-Sample Cross-
Validation Index Over Successive Modifications

Modification
i 2 3 4
n 1 D I D 1 D 1 D
100 4 6 9 1 5 5 7 2
150 3 7 5 5 4 6 6 4
200 2 8 2 8 2 8 4 6
250 2 8 0 10 4 6 0 10
325 1 9 2 8 i 9 1 9
400 0 10 2 8 0 10 1 9
800 0 10 0 10 0 10 0 10
1,200 0 10 0 10 0 10 0 10

Note. 1= increase, D = decrease.

tion was highly inconsistent. Thus, Table 5 shows which step in
the searches produced the lowest CV2, rather than which
model did so. Once again, results show considerable inconsis-
tency at low levels of n, becoming fairly consistent only for ns of
325 or larger. Complete consistency is seen at ns of 800 and
1,200, when the last model considered in each search produced
the lowest value of CV2. This observation is, of course, redun-
dant with the results in Table 4 showing CV2 to decrease at each
step when # was 800 or 1,200.

Results in Tables 4 and 5 indicate that in terms of the two-
sample cross-validation index, one cannot have confidence in
the cross-validity of a modified model unless sample size is
quite large. Furthermore, at small-to-moderate sample sizes,
support for cross-validity of modified models is highly subject

Table 5
Frequency for Each Model Having the Lowest
Two-Sample Cross-Validation Index

Model
n MO Ml M2 M3 M4
100 3 4 0 1 2
150 1 1 1 3 4
200 1 0 { 3 5
250 0 0 1 0 9
325 0 1 0 1 8
400 0 1 0 1 8
800 0 0 0 0 10
1,200 0 0 0 0 10
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to sampling fluctuations. Some samples may produce support-
ive results; others may not.

Recall that CV2 was also calculated for each model using the
total sample covariance matrix, S,, as the cross-validation sam-
ple. Tables for this measure, analogous to Tables 4 and S, were
constructed but need not be presented. Results followed essen-
tially the same pattern as seen in Tables 4 and 5, but with an
important difference: In comparison with Table 4, results for
cross-validation to the total sample tended to show a slightly
higher frequency of improvement in CV2, especially for the
first two modifications in each search. As a consequence, in
comparison with Table 5, results for cross-validation to the total
sample showed slightly higher frequencies for the more com-
plex models producing the lowest values of CV2.

Results for the single-sample cross-validation index were so
consistent that they need not be presented in detail. At each
step in every specification search, at all sample sizes, CV1 de-
creased. Thus, in every search, the final model considered
showed the lowest value of CV1. Results of Browne and Cudeck
(1989) show that the model with the most parameters does not
always produce the lowest value of this index. Considering the
formula given in Equation 1, models with different numbers of
parameters will have different values of both terms in the for-
mula. In the special case of a specification search, as the num-
ber of parameters increases from step to step, the value of the
fitting function will decrease, but the value of the second term
in Equation 1 will increase. Because each step involves selection
of the new parameter that will produce the maximum decrease
in the fitting function, it would be expected that CV1 would
routinely decrease from step to step in a sequential specifica-
tion search. Only when the decrease in the fitting function be-
comes smaller than the increase in the second term of Equation
1 would this not be the case. In the present study, this never
occurred. This is not at all surprising and simply demonstrates
that CV1 is probably not appropriate for evaluating sequences
of models produced by specification searches. This index is not
used in the second sampling study.

Study 2

We conducted a second sampling study using a large data set
collected by Verhoef and Roos (1970). A subset of these data
was used by Cudeck and Browne (1983) and Browne and Cu-
deck (1989) to illustrate the use of cross-validation indexes. We
used the same data, consisting of scores for 2,677 students on
six mental ability tests, measured on three different occasions
corresponding to age levels of approximately 14, 16, and 18
years. These data fit the framework of a multitrait-multi-
method problem, in which occasions are analogous to meth-
ods. We attempted to use several different multitrait-multi-
method confirmatory factor analysis models (Widaman, 1985).
However, substantial difficulty was encountered in obtaining
convergent and proper solutions for many of these models in
the full sample or in subsamples. These problems have been
cited often in the literature (¢.g., Marsh, 1989; Wothke, 1984)
and caused us to limit our sampling studies in terms of levels of
n and number of replications. Nevertheless, we achieved lim-

ited success with two models, and we briefly describe our analy-
ses and results.

Part A

The first initial model used was a seven-factor model, con-
sisting of one general factor (with loadings on all 18 variables),
and six trait factors, each with loadings on the three replications
ofa given test. The trait factors were correlated with each other,
but not with the general factor. This model corresponds to Wi-
daman’s (1985) Model 2C. Following the design in Study 1, a
small sampling study was conducted by drawing three pairs of
samples of size 400 and three pairs of size 800. For each pair of
samples, the initial model was fit to the calibration sample and
then modified three times on the basis of the highest modifica-
tion index at each step. We calculated goodness-of-fit and cross-
validation indexes for the initial model and each modified
model.

Results were generally similar to those obtained in Study 1,
with one important difference. In every case, the fit of the ini-
tial model was quite good, for example, the mean value of
NNFTI across samples was approximately .95. The specific mod-
ifications carried out at each step were highly inconsistent at
both levels of 1, and did not correspond well with modifica-
tions made in analyses of the full sample. The two-sample
cross-validation index, CV2, behaved erratically across model
modifications at #» = 400 but decreased fairly consistently at
n = 800.

Part B

The second initial model used was a four-factor model, with
one general factor and three method factors. Each method fac-
tor had loadings on the six tests at a given occasion. The
method factors were correlated with each other but orthogonal
to the general factor. This model corresponds to Widaman’s
(1985) Model 3B. Another small-scale sampling study, following
the same procedure, was conducted. Sample sizes were 200 and
400. Three pairs of samples of each size were drawn, and three
modifications were conducted in each specification search.

Results of these analyses were more encouraging with regard
to stability and cross-validity. The fit of the initial model was
rather poor (mean NNFI approximately .84) but improved sub-
stantially by means of the specification search (mean NNFI of
final model approximately .91). In one sense, the particular
parameters freed at each step in these searches were quite con-
sistent across replications. Although the particular parameters
and their sequence varied across replications, the parameters
freed almost aiways came from a well-defined subset. In aimost
every case at both levels of », as well as in the full sample, the
parameter with the highest modification index at each step
represented a covariance between error terms for the same test
measured at two different times. Clearly, the four-factor model
was not adequate to account for relationships between the same
tests measured at different times. This systematic misspecifica-
tion was revealed in the modification indexes, resulting in
some consistency in the nature of the model modifications, if
not their sequence. In addition, cross-validity of modified mod-
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els was generally better, with CV2 decreasing through the se-
quence of modifications in almost every case, except when a
particular modification did not fit the subset just defined.

Discussion

An evaluation of our results must be approached with the
purpose of our study in mind. We are attempting to shed light
on some phenomena that can occur when model modifications
are conducted in practice. We will not argue that all of these
phenomena must occur in any given application. However, the
fact that a number of them can be seen quite clearly in our
results provides strong evidence and reason for concern about
what can happen in practice.

From this perspective, our results clearly reveal several im-
portant phenomena. The first is that the specific modifications
carried out in a sequential specification search can be highly
unstable in small-to-moderately-large samples. They may not
be completely stable even when sample size is very large. This
phenomenon was revealed in Study 1 and in Part A of Study 2.
These results imply that when a sequential specification search
is conducted in practice using data from a single sample, re-
searchers cannot have great confidence that the specific model
modifications would generalize beyond that sample. Unless
sample size is very large, modifications may be quite idiosyn-
cratic to that particular sample. Analyses of other samples of
the same size may produce a quite different sequence of modifi-
cations. Furthermore, our results show that model modifica-
tions that are based on sample data may not correspond well to
modifications that would be made in the population, as ap-
proximated here by the very large full sample in each study.

A second general finding, which is based on Study i and Part
A of Study 2, is that modified models may not cross-validate
consistently well unless sample size is quite large. As measured
by the two-sample cross-validation index, cross-validity of mod-
ified models was found to be quite unstable at small-to-moder-
ate levels of sample size. This finding implies that researchers
can have little confidence in cross-validity of models produced
by sequential specification searches in practice, unless sample
size is very large.

Another important result from Study | and Part A of Study 2
is that cross-validation results themselves can be quite unstable
across repeated samples, especially in small-to-medium-sized
samples. Thus, even if a researcher conducts a two-sample
cross-validation in practice and finds supportive evidence for a
modified model, the same procedure repeated on a new pair of
samples may produce a very different outcome. That is, cross-
validity may not be supported in a different pair of samples.

Recall that our findings from Study 1 showed that twc sam-
ple cross-validation results were slightly more encouraging
when CV2 was calculated using the total-sample covariance
matrix rather than the covariance matrix from a completely
independent sample of the same size. Using this approach,
cross-validity seemed to improve more consistently for the early
modifications in the searches. Although this may seem to indi-
cate that validity of modified models in the population may be
better than indicated by the use of CV2 for independent sam-
ples, we caution against being overly encouraged. First, results

for cross-validation to the total sample were only slightly better
than those for cross-validation to independent samples, shown
in Tables 4 and 5. Second, this improvement could be an arti-
fact to some extent, because the total sample obviously includes
each subsample in which model fitting and modification were
conducted. Given these factors, we believe results from cross-
validation to independent samples should be given more
weight.

Results from Study 1 also revealed an important phenome-
non related to goodness of fit. Recall that goodness-of-fit mea-
sures were rather unstable for both initial and modified models
across repeated samples. Thus, a researcher who modifies a
model in practice to improve its fit may be making decisions
that are highly influenced by sampling fluctuations. Fitting
and modifying an initial model in another sample may result in
substantially more or fewer, and perhaps quite different, model
modifications to achieve adequate fit.

Focusing next on results of Study 2, there is evidence of two
additional phenomena of interest. Results of Part A, where the
seven-factor model was used as the initial model, showed very
good fit of the initial model, followed by highly unstable modi-
fications. This finding suggests the logical conclusion that
when an initial model fits well, it is probably unwise to modify
it to achieve even better fit because the modifications may sim-
ply be fitting small idiosyncratic characteristics of the sample.
Of course, in such circumstances a specification search is gener-
ally unnecessary, though it may still be tempting for some re-
searchers to take advantage of opportunities to improve fit that
is already good.

Results of Part B of Study 2 provided the only encouraging
support for stability and cross-validity of model modifications.
In that study we found fairly consistent and interpretable model
modifications in relatively small samples, with good cross-vali-
dation indexes. This finding indicates that the negative phe-
nomena observed in other parts of our study do not necessarily
occur in every case. Furthermore, it can be seen that these more
encouraging results were found when the initial model was sys-
tematically misspecified and inadequate to explain the data.
Thus, there are circumstances under which a specification
search conducted in practice can yield a modified model that
would be stable over repeated samples and would cross-validate
well to an independent sample and to the population. However,
in practice it may be quite difficuit to determine whether these
circumstances exist in any given case. It is tempting to draw the
conclusion that these circumstances are supported by highly
interpretable model modifications. However, we have already
discussed concerns about how readily a researcher might find
an interpretation for a modification that offered substantial
improvement in fit. Thus, although results of Part B of Study 2
offer some encouraging signs, we do not see them as providing
support for stability and cross-validity of model modifications
in most empirical studies.

The findings reported here call into question the process and
outcomes of specification searches in CSM, except in those few
cases in which samples are extremely large. Consider the follow-
ing scenario: Suppose a researcher began by fitting an initial
model to a calibration sample, found that it fit at a mediocre
level, modified it so as to improve its fit to an adequate level,
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then cross-validated the modified model on a second sample
and found the modified model to produce a better value of CV2
than the initial model. Our findings would make us quite skep-
tical of the support for the final model on several grounds.
First, the instability of fit measures (Tables | and 2) means that
the fit of the initial and final models in the calibration sample
might be substantially different in another sample, meaning in
turn that the specification search might be much shorter or
longer. Second, the instability of particular modifications
across samples (Table 3 and Part A of Study 2) means that a
specification search in a different sample may well have pro-
duced a very different sequence of modifications. Third, the
instability of cross-validation results (Tables 4 and 5 and Part A
of Study 2) means that supportive findings with regard to cross-
validity might well be another chance characteristic of the sam-
ple data and that quite different results might occur if different
calibration and cross-validation samples were analyzed.

We believe these concerns are relevant to the vast majority of
studies in which model modification is carried out. As dis-
cussed in the introduction, most such applications focus on
improving the fit of an initial model by conducting a mechani-
cal specification search. Such applications usually are not
based on data from large samples and seldom provide informa-
tion about cross-validity. An important implication of our find-
ings, though, is that we would generally not be persuaded by
supportive two-sample cross-validity evidence anyway (unless
sample size is very large), because model modifications and
cross-validity results are themselves quite unstable across re-
peated sampling.

Although we are quite confident in the legitimacy of these
concerns, we recognize at least two aspects of the current study
that merit further attention. The first is the generalizability of
our findings, in that they are based on analyses of samples
drawn from only two large data sets. Could these data be atypi-
cal in some sense? Would support for cross-validity of modified
models be more favorable in other data sets? Although this
scenario is possible, we consider it rather implausible. We have
found nothing unusual about the data or the initial model used
here. Furthermore, we reemphasize the point that our objective
has been to reveal phenomena that can occur quite readily in
empirical applications of specification searches. From that per-
spective, our results should cause serious concern. We suggest
that the burden of proof is on those who may wish to prove us
wrong, that is, to show that model modifications and cross-
validity results are normally quite stable over repeated samples.
We would be most interested to see sampling studies on large
sets of empirical data showing such results.

A second limitation of the present study involves the manner
in which model modifications were conducted. We used a me-
chanical process whereby an initial model was modified se-
quentially to achieve optimal improvement in overall fit. As
emphasized above, we recognize that this approach violates the
routine recommendation that modifications be substantively
justified. However, our study was designed to mimic the man-
ner in which models are often modified in practice. Neverthe-
less, a legitimate question involves whether stability and cross-
validity of modified models would improve if an alternative
approach to model modification were used. We suggest again

that the burden of proof is on those who wish to show that
highly generalizable modified models may be obtained using a
different strategy. As stated earlier, any strategy that is data
driven is inherently susceptible to problems arising from capi-
talization on chance. Therefore, we expect that most proce-
dures for model modification would exhibit problems of the
kind we have discussed and demonstrated.

A final issue raised by our findings concerns the question of
how a researcher should evaluate cross-validity of modified co-
variance structure models. The single-sample cross-validation
index, CV1, should not be used for this purpose. Browne and
Cudeck (1989) proposed that measure for the comparison of
alternative a priori models and demonstrated its usefulness.
However, CV1 is not useful for evaluating cross-validity of a
sequence of models produced by a specification search, be-
cause it will virtually always show the most complex model to
have the best cross-validity. That is, CV1 is not designed to be
sensitive to capitalization on chance in the specification search
process. With regard to two-sample cross-validation, we are
concerned by the unstable results found with regard to the be-
havior of CV2 in most of the conditions we examined. This
index behaved erratically when sample size was not large, which
is when cross-validation is most needed.

Rather than use one of these indexes to assess cross-validity
of modified models, we recommend a parallel specification
search procedure. This procedure would involve conducting the
specification search process on independent samples and ob-
taining goodness-of-fit measures for each model in each sam-
ple. One would also obtain two sets of two-sample cross-vali-
dation measures by carrying out a double cross-validation
analysis, exchanging the designation of calibration and cross-
validation samples. We believe this approach would provide
the most relevant information by allowing the investigator to
assess the consistency of the model modifications as well as
goodness-of-fit and two-sample cross-validation measures in
each sample. Inconsistent results would cast severe doubt on
the validity of the final model(s) obtained; consistent results
would provide strong support. On the basis of our findings, we
expect that such support would be obtained primarily when
sample size is very large or the initial model is systematically
misspecified.

In summary, our results bring us to a position of considerable
skepticism with regard to the validity of the model modifica-
tion process as it is often used in practice. We believe models
produced by mechanical specification searches in samples that
are not extremely large are likely to be highly influenced by
chance characteristics of the sample. For researchers who pro-
ceed with model modifications in single samples in the face of
the problems and concerns we have raised, it is essential that
they take a very conservative approach, that is, make few modi-
fications and require clear interpretability. This requirement
might be relaxed slightly in studies of a more exploratory na-
ture. In any case, however, researchers must clearly acknowl-
edge the questionable validity of a modified model by stating
that the initial model has been modified to improve its fit to a
single sample and that the resulting modified model may not
generalize to other samples or to the population. Such models
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must be evaluated in subsequent studies using independent
samples.

Finally, given the concerns we have raised regarding specifica-
tion searches in CSM, we encourage researchers to consider an
alternative strategy for the development and evaluation of co-
variance structure models: the use of multiple a priori models.
In confirmatory studies there may be conflicting theoretical
positions or diverse research findings that call for the construc-
tion of competing models. In exploratory studies alternative
models may be constructed as a result of mere uncertainty
about the pattern of relationships among variables or a variety
of ideas about the nature of that pattern of relationships. Alter-
native models could then be fit to sample data and evaluated in
terms of overall fit, cross-validity, and interpretability of re-
sults. This approach is encouraged by Cudeck and Browne
(1983) and Browne and Cudeck (1989) in their development of
measures of cross-validity of covariance structure models. We
strongly endorse this approach and consider it a more defens-
ible method of model development than the construction of a
single initial model followed by a number of data-driven modifi-
cations of that model. Because the construction of alternative a
priori models is not driven by the data at hand, the process of
model comparison and selection should be somewhat less in-
fluenced by chance characteristics of the data. Furthermore,
the serious problem of interpretation of model modifications
would be circumvented by this approach.
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