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Asymptotic Effect of Misspecification in the 
Random Part of the Multilevel Model 

Johannes Berkhof 
VU University Medical Center 

Jarl Kennard Kampen 
Katholieke Universiteit Leuven 

The authors examine the asymptotic effect of omitting a random coefficient in the 
multilevel model and derive expressions for the change in (a) the variance compo- 
nents estimator and (b) the estimated variance of the fixed effects estimator. They 
apply the method of moments, which yields a closed form expression for the omis- 
sion effect. In practice, the model parameters are estimated by maximum likelihood; 
however, since the moment estimator and the maximum likelihood estimator are 
both consistent, the presented expression for the change in the variance components 
estimator asymptotically holds for the maximum likelihood estimator as well. The 
results are illustrated with an analysis of mathematics performance data. 

Keywords: between-unit variance proportion, misspecification, moment estimation, multi- 
level model, random coefficient 

An important aspect of the specification of the multilevel model (Bryk & Raudenbush, 
1992; Goldstein, 1995; Longford, 1993) concerns selection of the random coeffi- 
cients. Since it is not always obvious which random coefficients to select, the final 
model may contain misspecification in the random part. This affects the inferences 
that can be made about fixed effects, since the estimated standard errors of the fixed 
effects depend on the covariance structure of the model. It is important to have insight 
into the sensitivity of the fixed effects with respect to changes in the specification of 
the random part. This insight may act as a guide when one is modeling data, and it is 
also helpful when one is examining the results of a multilevel analysis performed by 
others. In the latter case, one usually does not have (quick) access to the original data 
and, for that reason, cannot instantly check the sensitivity of the results by refitting 
the model under different covariance structures. A good insight, however, still 
enables one to make a statement about the sensitivity of the reported results. 

This article is based on research reported in the first author's PhD dissertation supervised by Tom 

Snijders and financially supported by Grant ESR 510-78-501 from the Dutch Organization for Scientific 
Research. Part of the research was done while the first author was employed at the Katholieke Universiteit 
Leuven and the second author was employed at the Katholieke Universiteit Brussel. We are grateful to 
Marie-Christine Opdenakker and Jan Van Damme for the data and to Anne Boomsma for helpful com- 
ments. This article was accepted under the editorship of Larry Hedges. 
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In this article, we study the asymptotic effect of omitting a random coeffi- 
cient on the variance component estimator. We apply a moment estimation proce- 
dure because the moment estimator can be written in closed form. In addition, the 
moment estimator is consistent, so the change in the variance component estimator 
asymptotically holds for the maximum likelihood (ML) estimator as well. We also 
derive an expression for the asymptotic change in the estimated variance of the fixed 
effects estimator obtained when a random coefficient is omitted. This is important 
because this estimated variance is used in the t test for a fixed coefficient. 

The literature on misspecification of the random part of the multilevel model 
usually focuses on the change in the ML estimator. Closed form expressions are 
then difficult to obtain but can still be derived when the data are balanced (i.e., 
equal Level 1 design matrices for higher level units) or when the model contains 
only a random intercept at Level 2 (Berkhof & Snijders, 2001). In the case of the 
balanced two-level model, Lange and Laird (1989) presented expressions for the 
effect of omitting a random coefficient on the unrestricted and restricted ML esti- 
mator of the variance components. Further results for the two-level random intercept 
model have been presented by Bryk and Raudenbush (1992, p. 92) and Longford 
(1993, p. 53), and results for the three-level random intercept model have been pre- 
sented by Hutchison and Healy (2001) and Moerbeek (2004). The purpose of this 
article is to present a general method that covers a wide range of multilevel mod- 
els. Although the general applicability of the method is appealing, the usefulness 
of the approach largely depends on whether the derived formulas are easy to inter- 
pret. For this purpose, we introduce the between-unit variance proportion, which is 
a generalization of the intraclass correlation coefficient (Bryk & Raudenbush, 1992, 
p. 18; Goldstein, 1995, p. 19; Snijders & Bosker, 1999, p. 16); the two measures 
coincide under the two-level random intercept model. After the between-unit vari- 
ance proportion has been defined, the omission effects can be written in an attrac- 
tive, simple form. 

The article is organized as follows. In the next three sections, we describe the 
model, derive moment estimators for the model parameters, and present the between- 
unit variance proportion. In the subsequent sections, we study the effect of omitting 
a random coefficient in a two-level model and in a model with more than two levels. 
The final section contains some concluding remarks. 

The Multilevel Model 

Multilevel models for normally distributed response data can be formulated as 
special cases of the general linear mixed model (Harville, 1977): 

y = Zy + Xu + , (1) 

where y is an N x 1 vector of responses, Z is an N x cz design matrix for the fixed 
effects y, X is an N x cx design matrix for the random effects u, and e is a vector 
of Level 1 disturbances. The distributional assumptions are u - 

Ncx[O, 
T(0)] and 
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E - NN(0,02 IN). The matrix T(0) is linear in 0, the elements of which are variance 
and covariance parameters. We may decompose X as X = (X,, ... , XQ) where 
each N x CXq matrix Xq corresponds to a different random coefficient. If we substi- 
tute the Xqs in Model 1, we obtain 

Q 

y =Zy+ Xquq +E. (2) 
q=1 

The variance of the cXq X 1 random coefficient Uq is var(Uq) = qqIcx, (q = 1,.... Q); 
the covariance between u, and us is cov(uq, Us) = 

OqscXq, (q ? s) for some Xq and 

X, that have the same number of columns and a matrix of zeros otherwise. 

Estimation 

We examine the effect of omitting a random coefficient on the estimators of 02 
and 0. This effect is, asymptotically, a model misspecification effect that does 
not depend on the estimation method but is the same for all consistent estimators. 
We choose consistent moment estimators since they can be written in closed form. 
The moment estimators are constructed as follows. We define r = y - Zy and esti- 
mate a2 and 0 by setting tr(rr') and 

tr(X'rr'Xs) equal to their expected values, 
yielding a2 and 0. In practice, we do not observe r, since y is unknown. How- 
ever, if we replace y with a consistent estimator, then the consistency of G2 and 
0 is preserved. 

We also examine the effect of omitting a random coefficient on the estimated 
variance of the estimator of y. Here the choice of the fixed effects estimator matters, 
also asymptotically. To illustrate this, let us denote the fixed effects estimator in the 
full (correct) model as ' and the estimator in the constrained (misspecified) model 
as 7c. The estimators /c and 7 may be different if they depend on the estimated vari- 
ance components, in which case the change in the variance of the fixed effects esti- 
mator consists of two components: a misspecification and an efficiency component. 
The two components sum up to the total change: 

var(C) - v^r 6) = [v^r 6 C) - V^r6)]+ [vr() -var()] 
= misspecification effect + efficiency loss. (3) 

The efficiency loss arises when, under the correct model, the variance of the esti- 
mator jc is larger than the variance of ' (Longford, 1993, p. 56). This loss does not 
have to vanish if the sample size goes to infinity. 

Efficiency loss is of own interest, but, for now, we focus only on the omission 
effect on var(y() that is not the result of a change in the definition of ". Regard- 
ing the t test for 7, efficiency loss is reflected by a change in the sampling distri- 
bution of the p value under prespecified alternatives. Misspecification affects the 
sampling distribution of the p value under the null hypothesis, which means that 
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the test becomes either liberal or conservative. When studying the misspecifica- 
tion effect on var(-), we need an estimator of y for which the efficiency loss 
equals zero. An estimator for which this holds is the ordinary least squares (OLS) 
estimator 

Sols = (Z'Z)-'Z'y, (4) 

which is used throughout this article. 

Between-Unit Variance Proportion 
To obtain an expression for the misspecification effect that is easy to interpret, 

we introduce a measure that we will label between-unit variance proportion. We 
derive this measure from the intraclass correlation coefficient (Bryk & Raudenbush, 
1992, p. 18; Goldstein, 1995, p. 19; Snijders & Bosker, 1999, p. 16), which is defined 
as the proportion of the total variance in a two-level random intercept model that is 
accounted for by Level 2. The intraclass correlation coefficient is a correlation in 
that the Level 2 variance is equal to the covariance between two responses from the 
same Level 2 unit. 

If we consider the intraclass correlation coefficient as a variance proportion 
rather than as a correlation, it is straightforward to formulate a variant of the intra- 
class correlation coefficient for multilevel models beyond the two-level random 
intercept model. Consider a simple version of Model 1 where var(u) = OIj and 
var(E) = a2IN. The total variance of the data can be expressed as 

tr [var(y)] = tr(X'X)0 + No2. (5) 

The term tr(X'X)O is the part of the total variance modeled by predictor X. 
Expressed as a proportion, we have the between-unit variance proportion 

tr (X'X)O 
tr(X'X)0 + No2 

Unlike the intraclass correlation coefficient, the between-unit variance proportion 
# is not always a correlation. 

The parameters 0 and a2 in Equation 6 are unknown and replaced by their moment 
estimators, defined in the previous section. We obtain the following expression for 
the estimated between-unit variance proportion: 

S[ tr(X'fi'X)N I/Ftr(X'XX'X)N , 
(7) 

x tr (X'X) tr (+') / tr(X'X)2 
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where r =y - Zjols. The definition off,x can be easily extended to other variables. 
Suppose we have an N x 1 vector w and an N x J matrix X. Then we define the 
between-unit variance proportion as 

f [ tr(X'ww'X)N 1 
[tr(X'XX'X)N (8) 

f L tr (X'X) tr (ww') 
-1i 

tr (XX)2 1 (8) 

If we assume that w is stochastic with mean zero, the between-unit variance pro- 
portionfx may be interpreted as the estimated proportion of the variance of w that 
is accounted for by predictor X. 

Misspecification in Two-Level Models 

Omitting a Random Intercept at Level 2 

The two-level random intercept model with one fixed effect can be written as 

y = zy + Xu + E, (9) 

where X is a block-diagonal matrix. The jth block of X, corresponding to the j th 
Level 2 unit (j = 1, ... , J), consists of an n x 1 vector of ones. We study the 
asymptotic misspecification effect obtained when n and J tend to infinity. We 
assume that z is bounded and that 

limN_,z'z/N 
is equal to positive ao. After dis- 

carding the random intercept from the model, we retain the single-level model: 

y = zy + Ec, (10) 

The Level 1 variance of the single-level model is denoted by a. In what follows, 
we are interested in the difference between the estimators for a2 and a . To esti- 
mate the parameters in the random part of the random intercept model, we assume 
that y is known and equate tr (X'rr'X) and tr (rr') to their expected values (where 
r = y - zy). In a second step, we replace r by r = y - 

Zj7oIs (the bias as a conse- 
quence of this substitution tends to zero if z is bounded and z'z --> oo), which gives 
the following equations: 

tr(X',r'X) = nNO + Na2 (11) 

and 

tr(iF') = NO + N&62. (12) 

The parameter in the random part of the single-level model (Equation 10) can be 
estimated by equating tr(rr') to its expected value and replacing r by ?, yielding 

tr(f') = N& . (13) 
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Because we are interested in the differences between the moment estimators 6,2 and 
T^2, we subtract Equation 12 from Equation 13 and obtain 

^ 2 2 = 
^ 

= 0 + op(1), (14) 

where op(l) is a random variable that converges to zero in probability. Equation 14 
holds for any consistent estimator. The expression for the estimated variance of the 
OLS estimator Yos, is in the random intercept model 

a2 tr (X'zz'X) var (Yojs) = -- + 
z'z (z'z)2 

( +1)+ + (n - l)fx 
~= G2 

x 
9, (15) 

z'z z'z 

where fzx is defined according to Equation 8. In the single-level model, the esti- 
mated variance of YoNl equals 

^2 

var(YIs) = - . (16) 
zz 

Subtracting v&irc (osl,) from v^r('y^Is) and dividing the difference by var((0oIs) yields 
the relative change, the limiting value of which is 

v ar c(os)- var (9 
os) ARC1 = plim 

van,J-r(- o 

plim 1 -f1 (17) 
n, 

1- 2 1 ?fzj 
n-1 n- 1 

The sign of ARCo0s is opposite to the sign off,. Because it is assumed that the ran- 
dom intercept model is the correct model and the single-level model is the incor- 
rect model, a negative change corresponds to liberal t testing and a positive change 
corresponds to conservative t testing. 

To gain insight into the relation between the asymptotic relative change and z, 
we consider three cases. 

1. z is a group variable. Then all variation in z is between-group variation so 
thatf,- equals 1 and ARCos, = -1, in which case the t test for the fixed effect becomes 
liberal. 

2. z is a group-centered variable. Then f = -1/(n - 1) and ARCos 
= 0/a2, in 

which case the t test for the fixed effect becomes conservative. 
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3. z is a stochastic variable for which plimn, 
_-. 

tr(X'zz'X)N/[tr(X'X)(z'z)] = 1. 
Then plim n fz = 0 and ARCCo, = 0. An example of this type of predictor is a sto- 
chastic variable z with zero variance at Level 2 (i.e., no correlation within groups). 

These cases show that if the random intercept is omitted, the test for the fixed effect 
is asymptotically liberal if the predictor with a fixed effect is a group variable and 
asymptotically conservative if the predictor is a group-centered variable. The omis- 
sion of a random intercept does not asymptotically affect the test results (when y 
is estimated via OLS) if the predictor is a Level 1 variable with zero between- 
group variance. 

Example 
We compared the change in the ML estimate of the Level 1 variance with an 

approximation of the asymptotic change obtained when substituting ML estimates 
in Equation 14. We used a data set containing mathematics achievement scores of 
3,632 students from Belgium (Opdenakker & Van Damme, 2000). The students 
were nested within 279 classes in 57 secondary schools. The data were not balanced; 
observations per class varied from 1 to 26, and observations per school varied from 
1 to 266. The response variable was the mathematics achievement score (MATH) 
at the end of the first grade. Administrated variables with a fixed effect were student 
gender (SEX; boy = -1; girl = 1); standardized motivation score (PM), standardized 
educational level of father (ELFA); standardized intake mathematics achievement 
score (MATHO); a class-centered IQ score (IQI) obtained by centering the stan- 
dardized IQ score (SIQ) around the class mean; a school-centered IQ score (IQ2) 
obtained by centering the class mean of SIQ around the school mean of SIQ; and an 
aggregate IQ score (IQ3) obtained by centering the school mean of IQ around the 
overall mean. 

We specified two different random intercept models by including a random inter- 
cept at the class level (Model 2) and at the school level (Model 3). These models, as 
well as the single-level model (Model 1), were estimated with MLwiN (Goldstein 
et al., 1998). We first assumed that the correct model is a two-level model with a ran- 
dom intercept at the class level and that the random intercept is omitted. The change 
in the ML estimate of the Level 1 variance is then 14.91 - 12.68 = 2.23 (Table 1). If 
the ML estimates are substituted in Equation 14, we obtain a difference of 2.30. We 
see that Equation 14 and the ML method yielded similar values for the change in the 
estimates of the Level 1 variance. We then assumed that the correct model is a two- 
level model with a random intercept at the school level, in which case the change in 
the ML estimate of the Level 1 variance is 14.91 - 13.65 = 1.26. If we use Equation 
14, we obtain a change of 1.83. In the latter comparison (Model 3 vs. Model 1), the 
computed change is larger than in the former one (Model 2 vs. Model 1). A possible 
explanation for this is that the number of clusters J is equal to 279 in Model 2 and 

equal to 57 in Model 3. The precision of the Level 2 variance estimator increases with 
the number of clusters J (Miller, 1977), and therefore the estimator of the intercept 
variance tends to be closer to the asymptotic value in Model 2 than in Model 3. 
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TABLE 1 
Mathematics Performance Data: Maximum Likelihood Estimates 

Fixed effects Model 1 Model 2 Model 3 Model 4 Model 5 

CONS 18.05 17.98 17.99 17.92 17.97 
(0.064) (0.114) (0.227) (0.225) (0.202) 

SEX 0.21 0.07 0.05 0.04 0.02 
(0.066) (0.076) (0.082) (0.082) (0.081) 

PM 0.21 0.16 0.17 0.16 0.16 
(0.065) (0.063) (0.064) (0.063) (0.063) 

ELFA 0.01 0.04 0.06 0.06 0.05 
(0.067) (0.065) (0.066) (0.066) (0.065) 

MATHO 2.62 2.56 2.58 2.55 2.55 
(0.091) (0.090) (0.090) (0.122) (0.090) 

IQ1 1.05 1.06 1.04 1.03 1.06 
(0.095) (0.089) (0.092) (0.092) (0.089) 

IQ2 2.62 2.45 2.64 2.60 2.53 
(0.167) (0.256) (0.161) (0.162) (0.218) 

IQ3 2.11 2.17 2.00 2.10 2.09 
(0.190) (0.273) (0.395) (0.402) (0.376) 

Variance components 
School level 

Intercept variance 0 0 1.83 1.77 1.20 
Slope variance 0 0 0 0.24 0 

Class level 
Intercept variance 0 2.30 0 0 1.24 

Student level 
Residual variance 14.91 12.68 13.65 13.47 12.69 

Note. Standard errors are shown in parentheses. 

In addition to the change in the estimated Level 1 variance, we compared the 
change in the estimated variance of n with the asymptotic misspecification effect. 
We computed the relative changes from the estimates shown in Table 1 and multi- 
plied by 100% to obtain the percentage changes in vir (ym), denoted by 

PCn. 
The 

results are presented in Table 2. It can be seen that, for the between-cluster vari- 
ables, the percentage changes are negative. The values, however, substantially 
deviate from the asymptotic percentage change APCos (= ARCojs x 100%), which 
is -100% for between-cluster variables. The value of PC. for the group-centered 
variable IQ1 in Model 2 (14%) is comparable to the approximation of APCojs 
obtained when substituting the ML estimate in Equation 17, which is 0/02 = 
2.3/12.68 = 18%. The value of PCn for the group-centered variable IQ2 in Model 
3 (8%) is also comparable to the approximation of APCo0s, which is 1.83/13.65 = 
13%. The tabulated percentage changes in the other covariates were close to zero 
and slightly higher than corresponding approximations of APCos, (data not shown). 
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TABLE 2 
Two-Level Random Intercept Model Versus Single-Level Model: Between-Unit 
Variance Proportions and Percentage Changes in the Estimated Variances of the 
Fixed Effects Estimator 

Model 2 vs. Model 1 Model 3 vs. Model 1 

Ax PCmi Ax P C, 

CONS 1.00 -68 1.00 -92 
SEX .50 -25 .53 -35 
PM .06 6 .03 3 
ELFA .12 6 .07 3 
MATHO .32 2 .18 2 
IQ1 -.07 14 -.01 7 
IQ2 1.00 -57 -.01 8 
IQ3 1.00 -52 1.00 -77 

These differences are possibly related to the efficiency loss involved in estimating 
under a misspecified model. 

Omitting a Random Slope at Level 2 

We assume that the population model is a two-level model with a random inter- 
cept and one random slope and that the misspecified model is a random intercept 
model. The model can be written as 

Y = zy + 
XIul 

+ X2u2 + E, (18) 

where X1 = 1j{xlj} and X2 = @j {x2jI are block-diagonal design matrices for the 
random intercept ul and the random slope u2. The Level 1 variance, the Level 2 
intercept variance, and the Level 2 slope variance are denoted by 02, 011, and 022. 
The Level 2 intercept/slope covariance is denoted by 012. As before, we assume 
that 

n. 
= ... = nj = n, that z is bounded, and that 

lim•z'z/ 
lN is positive and 

equal to 
ozz. 

We further assume that x2 = (x, .... x2J) is bounded and that 
lim 

•,,_ xz,/n 
= •X2 

and 
lim,• 

x x/1xIxIn 2, where 
axx2 

is positive. When u2 
is omitted from Model 18, we obtain the constrained model 

Y = zy + XIUic + Ec, (19) 

with variance parameters oa and 011,. 
We estimate the parameters in the random part of Model 18 by equating tr (rr'), 

tr(X'Irr'XI), tr(X'2rr'X2), and tr(X'Irr'X2) to their expected values, where 
r =y - Zy. Then we replace r with f =y - 

Zio1s. Expressions for (0 11i - 011) and 

(C2_ a2) as functions of the estimators of 022 and 012 are derived by subtracting 
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the equalities for the two models in which 
tr(iFt') 

and tr(X'1~F 'X1) appear. We 
obtain 

tr(X2X2) tr_(XX2) 
011c - 11 = fx2xl 22 + 2 tr(X 12 N N 

= fx2xlax2x2022 + 
20x1Yx2012 

+ Op (1) (20) 

and 

2 

^20tr(2X2) 22 
tr(X[X2)11 G2 2a 

= 
(1- fx2x 

UU22 

+ 2 1 N 1012 N N 

= (1 - fx2xt)x2x2022 
+ 2(1 - oxx2)012 + op(l). (21) 

The between-unit variance proportion fx2x is of the type illustrated in Equation 8, 
where the vector x2 = (x11 . X )' is substituted for w. 

From here onward, we will assume that 012 is equal to zero. Under this assump- 
tion, the change in the estimated intercept variance is proportional to fx2x,. This 
means, for instance, that if x2 is a group-centered variable (in which casefx2x, 

< 0), 
the change in the estimated intercept variance is negative, and if x2 is a group vari- 
able (in which case fx2x = 1), the change in the estimated intercept variance is pos- 
itive. The change in the estimated Level 1 variance is proportional to (1 

-fx,•1), 
and 

thus it is equal to zero if x2 is a Level 2 variable and positive otherwise. 
The variance of 

Tos 
is in the random intercept model estimated by 

=^ tr(Xzz'X,)(22) v 0c(i~os) = + Z1 (22) z'z (z'z)2 

and in the random slope model estimated by 

a2 
0,l 

tr(X;zz'Xi) 822 tr (X2'zz'X2) 
varT(fos)(= -Z+ , (23) vr z'z (z'z)2 (z'z)2 

If we combine Equations 20, 21, 22, and 23, we can derive the asymptotic relative 
change in the estimated variance of the OLS estimator of y: 

varc (os) - var ( os) ARC,,, = plim n,J--) var(ols) 

=plim ( 

f 
2 2(24) 

n-1 n-i1 nf +( -1 
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We evaluate Equation 24 for two cases. 

1. x2 is a stochastic predictor with zero variance at Level 2. Then plim nfx2x, = 0, 
and the sign of ARCOIs is opposite to the sign offIx2. If z is a Level 2 variable, plim 

nfzx2 = 0, and ARCo , = 0. If z is a cross-level interaction variable (i.e., of the type 
z = x2 x w, where w is a Level 2 variable), f12 = 1, and ARCos = -1. 

2. x2 is a Level 2 variable. Then fx2x, = 1, and the sign of ARCo1, is equal to the 

sign of fx, -f2. If z is a stochastic predictor with zero variance at Level 2, then 

plim n fz, = 0, plim n f,, = 0, and ARC,Is = 0. 

Example: Continued 

We compared the changes in the ML estimates of the variance components with 
the changes obtained when substituting the ML estimates in Equations 20 and 21. We 
assumed that the population model is a two-level model with a random intercept and 
a random slope of MATHO, both at the school level (Model 4). The Level 2 intercept/ 
slope correlation was set equal to zero. The ML estimates of the Level 2 slope vari- 
ance, Level 2 intercept variance, and Level 1 variance are 0.24, 1.77, and 13.47, 
respectively (Table 1). When the random slope is omitted, the changes in the ML 
estimates of the Level 2 intercept variance and the Level 1 variance are .06 and .18. 
If the changes are computed by substituting ML estimates in Equations 20 and 21 
and a value of .18 for the between-unit variance proportion, values of .04 and .20 are 
obtained. We see that the changes in the ML estimates are comparable to the changes 
obtained when applying Equations 20 and 21. We also computed the changes in the 
estimated variances of the ML estimator 

"n. 
The results are presented in Table 3. 

The largest negative change of 46% was found for the predictor MATHO, which had 
an APCOIs value of -100%. The other changes in the estimated variances were all 
close to zero, and the corresponding APCo0, values varied between -18% and 0% 
where n was replaced by the average number of students per school in Equation 24. 

TABLE 3 
Two-Level Random Slope Model Versus Two-Level Random Intercept Model: 
Between-Unit Variance Proportions and Percentage Changes in the Estimated 
Variances of the Fixed Effects Estimator 

Model 4 vs. Model 3 

fzxl fZx2 PCmi 

CONS 1.00 .18 2 
SEX .53 .14 0 
PM .03 .01 3 
ELFA .07 .06 0 
MATHO .18 1.00 -46 
IQI -.01 .21 0 
IQ2 -.01 .17 -1 
IQ3 1.00 .45 -3 
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Misspecification in Random Intercept Models With Q Levels 

The Q-level model (Q > 2) can be written as 

Q 

y = z7 + Xquq, (25) 
q=1 

where Xq is the design matrix for the random intercept at level q (q = 1, ..., Q). 
The Level 1 vector of disturbance terms is represented by ul, and therefore X, is an 
identity matrix. In the models discussed so far, the vector of Level 1 disturbance 
terms was denoted by e, but this notation is not useful for a Q-level model (Q > 2). 
We denote the variance at level q by q, and the number of level q - 1 units within 
each level q unit by nq-1, and we set no equal to 1. Note that nq_l does not carry an 
index for the unit number, which means that the group sizes of the level q units are 
assumed to be equal. 

The constrained model is obtained by omitting the random intercept at level m: 

Q 

Y = zY + I Xqcuqc. (26) 
q=1 
q#m 

The level q variance in the constrained model is denoted by Oqc. 

Omitting the Random Intercept at the Highest Level 

When we omit the random intercept at level Q, the change in the moment esti- 
mator for ,0Q_ is 

60Q-1,c - 0Q_- = 
8Q 

= 0, + o ,(l). (27) 

The moment estimators for the variances at Level 1 to Q - 2 do not change. Thus, 
the level Q variance is fully absorbed by level Q - 1. This may give rise to the fol- 
lowing interpretation for the intercept variance defined at the highest level of the 
data hierarchy: It describes not only the variation at this level but also the variation 
at higher levels that are not included in the model. 

We introduce Nq = 
I-1qI ni and estimate the variance of 

ojo1 
in the constrained 

model by 

Se- 
tr(Xqzz'X,) 

q q=1 (Z'Z)2 
4 1-1 

fzx__, 
(A 

-2- 1) 

.= 

1 

q 
1- + f, (N,_, - 1) 8, + 

O, (28) 
Z = q= 2 + 
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and in the full model by 

V ar y Qtr(Xzz'Xq) 
vr(Is) 

=1 
(ZZ)2 

q 
q=1 

1 Q 1Q 
= Oq + fz 

xq (Nq_ - 1)q. 
(29) 

ZZ q=1 Z'Z q=2 

The asymptotic relative change in the estimated variance of 
'j~s 

is 

var (yoIs) - var(y o,) ARCos = plim 

n,....,nv. 
Var(Tos) 

[fzxQ-I(NQ2 -1)- fzxQ (NQl- 1)] 
OQ 

= plim -4 Q 

N 2 

QQ Q. (30) 

nl,..,ng q=1 Oq + q=2 zxq (Nq- 1) q (30) 

We evaluate ARCQos for five cases. For the sake of simplicity, we confine ourselves 
to a three-level model (i.e., Q = 3). 

1. z is a Level 1 variable, and the entries are centered around the Level 2 means. 

Thenfzx2 = -(nl - 1)-,f,3 = -(N2- 1)-1, and ARCos = 0. 
2. z is a stochastic Level 1 variable with zero variance at Level 2. Then plim 

nlfzx2 = 0, plim N2fzx3 = 0, and ARCoIs = 0. 
3. z is a Level 2 variable the entries of which are centered around the Level 3 

means. ThenfA2 = 1,f,, = -(N2 - 1)-1, and ARCoI = 03/02, in which case the t test 
becomes conservative. 

4. z is a stochastic Level 2 variable with zero variance at Level 3. 
Thenfax2 = 1, 

plim n2f x3 
= 1, and ARCos = 0. 

5. z is a Level 3 variable. ThenfZx2 = 
1,fzx3 

= 1, and ARCoI = -1, in which case 
the t test becomes liberal. 

These cases show that the estimated variance of '01s, asymptotically, is not affected 
by the omission of Level 3 if z is a Level 1 variable centered around the Level 2 
group means or a Level 1 or Level 2 variable with zero variance at Level 3. Further- 
more, the omission of Level 3 leads to a liberal test result (when testing HO: y = 0) 
if z is a Level 3 variable and to a conservative test result if z is a Level 2 variable 
with entries centered around the Level 3 group means. 

Omitting the Random Intercept at an Intermediate Level 

When we omit the random intercept at level m (1 < m < Q), the changes in the 
moment estimators for 0,_1 and 0m+1 are 

0m+l,c - 0m+l = , nmn_1m - 1 

= 
OF(1) 

(31) 
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and 

m-,c - m-1nm - nm, 

nm-1_nm 
- 1 

= O, + O(1l). (32) 

The moment estimators of the variances at Level 1, ... , m - 2, m + 2, ... , Q do 
not change. Hence, levels m - 1 and m + 1 may be regarded as buffers for the other 
levels. It is also interesting to note that the changes in the level m - 1 variance and 
the level m + 1 variance sum to Om and that Om is absorbed by level m - 1 if sam- 

ple sizes nm and nm-, tend to infinity. 
The estimated variance of 

fois 
in the constrained model is 

O 
tr(Xqzz'Xq)q 

varc( ols =21 0 
q=1 (Z Z)2 q~m 

= 
1 

q +- fzxq(Nq-_ 

- 1) Oq 
Z'Z q=1 Z'Z q=2 

q#m 

+ j nm-lnm fzxm-1 (Nm2 * 
1 _- L nm - 12 

+ - 1 
fzx,+ 

(Nm - 1) 0m. (33) 

nm-_.m 

- 1Z 

Using Equation 33 and Equation 29, we obtain the following expression for the 
asymptotic relative change in the estimated variance of Yo1s: 

varc(f os - var( oys) 
ARCoIs = plim 

nl ...no 
.. 

nvar 
(^o0S) 

= plim 1 
nl, 

. 
.. X 
nQ 

q=1_ 

+ 
Xq=2 fZxq (Nq - 1) Oq 

x nm-nm - 
nm1 fZm-, 

(Nm-2 - 1) 

nmi-nm 
- 1 
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In the following, we examine the three-level model from which we discard the ran- 
dom intercept at Level 2. We evaluate 

ARCols 
for the five cases considered in the 

previous subsection. 

1. z is a Level 1 variable the entries of which are centered around the Level 2 
means. ThenfZ2 = -(nl - 1)-',f,, = -(N2 - 1)-1, and ARCos = 02/01, in which case 
the t test becomes conservative. 

2. z is a stochastic Level I variable with zero variance at Level 2. Then plim 
nlfZx2 = 0, plim N2fzx3 = 0, and 

ARCos 
= 0. 

3. z is a Level 2 variable the entries of which are centered around the Level 3 
means. Then f12 = 1, 

fz3 
= -(N2 - 1)-i, and ARCoI = -1, in which case the t test 

becomes liberal. 
4. z is a stochastic Level 2 variable with zero variance at Level 3. 

ThenfzX2 = 1, 
plim n2fzx3 = 1, and ARCoIs 

= -1, in which case the t test becomes liberal. 
5. z is a Level 3 variable. Then fx2 = 1, f3 = 1, and ARCos, = 0. 

These results can be summarized as follows. The omission of a random intercept 
at Level 2, asymptotically, does not affect the test result (when testing Ho: y= 0) 
if z is a Level 3 variable or a Level 1 variable with zero variance at a higher level. 
If z is a Level 2 variable, the omission of Level 2 leads to a liberal test result, and if 
z is a Level 1 variable with entries centered around the Level 2 group means, the 
omission leads to a conservative test result. 

Example: Continued 

We assumed that the population model is a three-level model with random inter- 
cepts at the class and school level 5 (Model 5) and considered the effect of omit- 

ting the random intercept at the school level and the effect of omitting the random 

intercept at the class level. The ML estimates of the Level 1 variance, Level 2 vari- 
ance, and Level 3 variance in the three-level random intercept model are 12.69, 
1.24, and 1.20, respectively (see Table 1). When the random intercept at the school 
level is omitted, the changes in the ML estimates of the Level 1 and Level 2 vari- 
ance are 0.0 and 1.1. If the ML estimate of the Level 3 variance is substituted in 

Equation 27, we obtain values of 0 and 1.2. It can be seen that the values obtained 
with Equation 27 are similar to the changes in the ML estimates of the Level 1 and 
Level 2 variance. When the random intercept at the class level is omitted from the 
three-level model, the changes in the ML estimates of the Level I and Level 3 vari- 
ance are 0.9 and 0.6. If the ML estimate of the two-level variance is substituted in 

Equations 31 and 32, we obtain values of 1.0 and 0.3. Here we replaced nj and n2 
with the average number of students per class (13.0) and the average number of 
classes per school (4.9). Equations 31 and 32 yielded approximations that were in 
the same direction as the changes in the ML estimates. 

As before, we also compared the changes in the estimated variance of the ML 
estimator jn with APCoI, (= ARCoIs x 100%). For the group-centered variables IQ2 
(Model 5 vs. Model 2) and IQ1 (Model 5 vs. Model 3), the changes in the estimated 

215 



Berkhof and Kampen 

TABLE 4 
Three-Level Random Intercept Model Versus Two-Level Random Intercept Model: 
Between-Unit Variance Proportions and Percentage Changes in the Estimated 
Variances of the Fixed Effects Estimator 

Model 5 Model 5 
VS. vs. 

Model 2 Model 3 

fZX2 fzx3 PCil PCmI 
CONS 1.00 1.00 -68 26 
SEX .50 .53 -12 2 
PM .06 .03 0 3 

ELFA .12 .07 0 3 
MATHO .32 .18 0 0 

IQ1 -.07 -.01 0 7 
IQ2 1.00 -.01 38 -45 
IQ3 1.00 1.00 -47 10 

variance of .mi were smaller than the corresponding approximations of APCo1, (see 
Table 4): The values for IQ2 were 38% and 1.20/1.24 = 97%, respectively, and the 
values for IQ1 were 7% and 1.24/12.69 = 10%. For the variables CONS and IQ3 
(Model 5 vs. Model 2) and IQ2 (Model 5 vs. Model 3), the value of APC0js is -100%, 
and the changes in the estimated variance of imj lie between -70% and -40%. 

Concluding Remarks 

The purpose of this article was to examine the asymptotic effect of omitting a 
random coefficient using analytical tools. We derived expressions for the change 
in the moment estimator of the variance components and for the change in the esti- 
mated variance of the fixed effects estimator. Both expressions turned out to be 
rather simple functions of between-unit variance proportions. 

The expression for the asymptotic change in the moment estimator of the vari- 
ance components may be useful when interpreting the variance terms in the model. 
We showed, for instance, that ignoring a level in a Q-level random intercept model 
may help us understand how the variance components at the different levels are 
related to each other. The expression for the change in the estimated variance of the 
fixed effects estimator sharpens one's insight into the sensitivity of the inferences 
about the fixed effects. The formulas can be applied when evaluating the results of 
a multilevel analysis performed by other researchers and when there is no access to 
the raw data. On the basis of the between-unit variance proportions, we made state- 
ments about whether the t test tends to be liberal, conservative, or exact when sam- 
ple sizes are large. 

Some limitations of the study can be mentioned. First, we confined ourselves 
to models with only one predictor and studied the asymptotic misspecification 
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effect. This approach yields transparent formulas, and asymptotic control of Type I 
error in the t test for fixed effects is a common criterion for evaluating the perfor- 
mance of a test. However, it is also important to know how accurate the formulas 
are in a more realistic setting with moderate sample sizes and many correlated pre- 
dictors. A comparison with a real data set indicated that the change in the ML esti- 
mates of the variance components is often comparable to the change computed 
from the formulas presented here. However, the presented asymptotic change in 
the variance of the estimated fixed effects can substantially deviate from the change 
in the variance of the ML estimates. The presented asymptotic change merely indi- 
cates whether the t test will become conservative or liberal, but the absolute change 
is not very informative. Second, we considered only the omission of a random 
coefficient, but it is also interesting to study the effect of including an extra ran- 
dom coefficient. Expressions for inclusion effects can be derived in a manner 
analogous to the expressions presented in this article. Third, we confined our- 
selves to studying misspecification in some basic multilevel models. With the 
technique presented here, however, it is also possible to derive expressions for the 
omission effect in multivariate multilevel models and multilevel models with 
crossed random effects. 
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