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The Consequence of Ignoring a Level of Nesting
in Multilevel Analysis

Mirjam Moerbeek
Department of Methodology and Statistics

Utrecht University

Multilevel analysis is an appropriate tool for the analysis of hierarchically structured data.
There may, however, be reasons to ignore one of the levels of nesting in the data analysis.
In this article a three level model with one predictor variable is used as a reference model
and the top or intermediate level is ignored in the data analysis.  Analytical results show
that this has an effect on the estimated variance components and that standard errors of
regression coefficients estimators may be overestimated, leading to a lower power of the
test of the effect of the predictor variable.  The magnitude of these results depends on the
ignored level and the level at which the predictor variable varies, and on the values of the
variance components and the sample sizes.

Introduction

In many studies data have a nested structure, which means that
individuals are nested within clusters, which may themselves be nested
within higher order clusters, and so on.  Examples of such studies are school-
based smoking prevention or HIV/STD and pregnancy prevention
interventions with pupils nested within schools (Ausems, Mesters, Van
Breukelen, & De Vries, 2002; Carvajal, Baumler, Harrist, & Parcel, 2001),
school effectiveness studies with pupils nested within schools (Aitkin &
Longford, 1986), and community-based drug abuse prevention programs
with individuals nested within communities within states (Livert, Rindskopf,
Saxe, & Stirratt, 2001).

When data have a nested structure, the common assumption of
independency of outcomes does not necessarily hold.  In school-based
smoking prevention interventions, for instance, smoking behavior of pupils
within the same school is likely to be correlated due to mutual influence,
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smoking behavior of teachers, and school policy towards smoking.  Ignoring
the nested data structure and using traditional regression analysis may lead to
incorrect estimators of model parameters and their standard errors, and hence
to incorrect test statistics and thereby incorrect conclusions.  Moerbeek, van
Breukelen, and Berger (2003) show that ignoring the nested data structure
may lead too an under- or overestimation of the standard error of the treatment
effect estimator in an intervention study and consequently inflated type I or
type II error rates, respectively.  Wampold and Serlin (2000) show that this
inflation may be substantial, especially when the dependency of outcome
variables of individuals within the same cluster is large.  Such errors may be
avoided by using the multilevel model (Goldstein, 1995; Hox, 2002; Kreft & De
Leeuw, 1998; Snijders & Bosker, 1999), sometimes also referred to as
hierarchical linear model (Raudenbush & Bryk, 2002) or random coefficient
model (Longford, 1993).  With multilevel modeling a random error term at each
level of the hierarchy is included into the regression model that relates the
outcome variable of interest to fixed predictor variables.  The total variance of
the outcome is partitioned into variance components, which are the variances
of these error terms.  Since the multilevel model contains both fixed and
random terms it is called a mixed model.

Users of multilevel models should be very cautious and lay out clear
rationale for why they decide to model a particular higher-level of variation.
This rationale should be based on theory, logic or study design (e.g. cluster
randomized trials, Raudenbush, 1997).  A possible rationale is provided by
the underlying assumption of multilevel analysis that (higher order) clusters
represent a random sample from a larger population of (higher order)
clusters, so that the results of the study are generalizable to this larger
population if their effects are treated as random in the model.  Another
possible rationale for regarding a cluster as a source of higher-level of
variation is that once clusters are established they will become differentiated,
implying that both the cluster and its members are influenced by the cluster
membership (Goldstein, 1995).

Even when the multilevel model is used, incorrect conclusions may be
drawn when higher-order levels of variation are ignored, which may occur
when the data set does not include identifiers on all possible levels of nesting.
So far, little is known on the consequence of ignoring a level of nesting in
multilevel models with more than two levels.  Hutchison and Healy (2001)
and Tranmer and Steel (2001) showed the effect of ignoring a level of nesting
on the estimated variance components.  Opdenakker and Van Damme
(2000) analyzed an existing data set with four levels of nesting to show the
effect of ignoring a top or intermediate level on the parameters estimates and
their standard errors.  They conclude that ignoring a level of nesting can lead
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to different research conclusions, and they stress the need for further
research on this topic.  The purpose of the present article is to give a
systematic overview of the consequence of ignoring a level of nesting in
multilevel analysis.  It is assumed the underlying data structure has three
levels of nesting; the corresponding multilevel model is given in the next
section.  Data sets are analyzed to show the consequence of ignoring a level
of nesting.  The results are explained and it is shown how variation at the
ignored level is redistributed to the other levels in the model and how test
statistics and power levels are influenced if a level of nesting is ignored.
Attention is also paid to unbalanced designs, and conclusions and a
discussion are given at the end of the article.

Multilevel Model and Test Statistic

In this article a three-level data structure is assumed.  For the sake of
concreteness, units at the bottom, intermediate and top level are called pupils,
classes, and schools, respectively.  Of course, words relevant to any other
field of science may be substituted.  For pupil i within class j within school
k the three level model that relates a quantitative (continuous) pupil level
outcome variable y

ijk
 to a (continuous or binary) fixed predictor variable x

ijk

is given by

(1) 0 1 ,ijk ijk k jk ijky x v u e� �= + + + +

were �
0
 and �

1
 are the intercept and slope.  v

k
, u

jk
, and e

ijk
 are the random

effects at the school, class, and pupil level, respectively.  These random
terms are independently and normally distributed with zero mean and
variances 2

v� , 2
u� , 2

e� , respectively.  These variances are called variance
components since they contribute to the total variance of the outcome
variable, given the fixed part �

0
 + �

1
x

ijk
:

(2) 2 2 2( )ijk v u eVar y � � �= + + .

Outcomes of pupils i and i� within the same class are dependent; their
covariance is

(3) 2 2( , ) ,  for .ijk i jk v uCov y y i i� �′ ′= + ≠

Likewise, the dependency of outcomes of pupils within the same school but
within different classes is given by
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(4) 2( , ) ,  for .ijk i j k vCov y y j j�′ ′ ′= ≠

The intra-school, intra-class, and intra-pupil correlation coefficients
measure the amount of variance that is at the school, class, and pupil level
and are calculated as

(5)
2 2 2

2 2 2 2 2 2 2 2 2,   ,   ,v u e
school class pupil

e u v e u v e u v

� � �
� � �

� � � � � � � � �
= = =

+ + + + + +

respectively (Davis & Scott, 1995).
In order to derive relatively simple formulae that are of practical use the

following assumptions are made.  The design is balanced.  The number of
schools in the sample is denoted n

3
.  Within each school n

2
 classes are

sampled, and within each class n
1
 pupils are sampled.  The predictor variable

may be measured at the pupil, class or school level.  A predictor variable that
is measured at the pupil level is assumed to vary at the pupil level only and
is centered to have zero mean within each class.  Likewise, a variable
measured at the class level is assumed to vary at the class level only and is
centered to have zero mean within each school.  A school level predictor
variable is centered to have grand mean zero.

The slope �
1
 is of main interest since it determines the effect of the

predictor variable x
ijk

 on outcome y
ijk

.  Since the outcomes are correlated the
regression coefficients and variance components should be estimated with
a suitable estimation method for multilevel analysis, such as Iterative
Generalized Least squares (IGLS) (Goldstein, 1986).  For a three level
balanced design with one predictor variable this gives

(6) 1 2
ˆ

ijk ijkijk

ijkijk

x y

x
� =

∑
∑ .

For a binary predictor variable (with x
ijk

 = –0.5 for group A and + 0.5 for
group B) this simply reduces to 1ˆ B Ay y� = − , that is  the difference in mean
outcomes in the two groups.  The variance of the slope estimator, 1�̂ ,
depends on the variance components at and below the level at which the
predictor variable varies (Moerbeek, van Breukelen, & Berger, 2000, 2001;
Snijders, 2001).  For three levels of nesting it can be found in Table 1.

In the next sections it will be shown that ignoring a level of nesting has
an effect on the value of the test statistic for the slope �

1
, and hence on type

I or type II error rates of the corresponding statistical test.  The null
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hypothesis of zero slope (H
0
: �

1
 = 0 ) is tested with the test statistic

1 1ˆˆ ˆ/ var( )z � �= .  The computer programs MLwiN (Rasbash et al., 2001)
and MIXREG (Hedeker & Gibbons, 1996) assume that this test statistic
has the standard normal distribution under the null hypothesis.  Given this
assumption, the power 1 – � of two-sided tests with alternative H

a
: �

1
 � 0

at a significance level � may be calculated from

(7) 1
1 / 2 1

ˆvar( )
z z� �

�
− −

∆=
+

where � is the minimal relevant deviation of �
1
 from zero, and z

1–�/2
 and z

1–�

are the 100(1 – �/2)% and 100(1 – �)% standard normal deviates.
The value of � may be difficult to specify.  For a binary predictor variable

the effect size (ES) for two independent means as defined by (Cohen, 1992)
may be used:

(8) .
standard deviation of outcome 

B Ay y
ES

−=

Table 1
Estimated Variance of the Slope Estimator without Ignoring a Level of
Nesting

Level of variation 1
ˆ ˆvar( )�

Pupil
2

2
1 2 3

ˆ e

xn n n s

�

Class
2 2

1
2

1 2 3

ˆ ˆe u

x

n

n n n s

� �+

School
2 2 2

1 1 2
2

1 2 3

ˆ ˆ ˆe u v

x

n n n

n n n s

� � �+ +

Note.  2
xs  is the variance of the predictor variable.
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The effect size is the degree to which the null hypothesis of no difference
between the two group means is believed to be false.  It is scale free and
ranges upwards from zero.  An effect size equal to zero corresponds with H

0
.

Cohen uses 0.2, 0.5, and 0.8 for small, medium, and large effect sizes,
respectively.  A medium effect size represents an effect likely to be visible
to the naked eye of a careful researcher.  The numerator of Equation 8 is
simply equal to �

1
, see Equation 6 and the succeeding sentence.  The

standard deviation of the outcome is equal to 2 2 2
v u e� � �+ + , see Equation 2.

Once the effect size is chosen and the values of the variances components
are known or estimated from previous studies or a pilot, � follows from
Equation 8 as � = ES × 2 2 2

v u e� � �+ +  and may be substituted into Equation
7 to calculate the power.

Numerical Example

An example is presented in Table 2 to illustrate the problems associated
with ignoring  the top or intermediate level of nesting.  A binary predictor
variable is used; it may vary at the pupil, class or school level.  For each
of these levels a data set was generated using the three level model shown
by Equation 1 with n

1
 = n

2
 = n

3
 = 10, and parameter values �

0
 = 0, �

1
 = 0.2,

2
v�  = 0.1, 2

u�  = 0.1, and 2
e�  = 0.8.  The data were analyzed with a three level

model and models ignoring one level of nesting, using IGLS as implemented
in the computer program MLwiN for multilevel analysis (Rasbash et al.,
2001).  Note that only the cases in which the ignored level is not the level at
which the predictor variable varies are considered, since it is realistic to
assume that all identifiers at the latter level are well registered and available
in the data set.

As follows from Table 2 ignoring a level of nesting has an effect on the
estimated variance components, and this effect does not depend on the level
at which the predictor variable varies.  Ignoring the school level results in an
unchanged estimated 2

e� , but a higher estimated 2
u� .  In fact, the estimated

2
v�  is added to the estimated 2

u� .  Ignoring the class level results in higher
estimated 2

v�  and 2
e� .  Ignoring a level of nesting does not have an effect on

the intercept and slope estimators in case of a balanced design, but it does
have an effect on their standard errors.  Ignoring the class level results in a
too high standard error of the slope estimator for a pupil level predictor
variable, and hence to a too high p-value, but does not have an effect on the
standard error of the slope estimator for a school level predictor variable.
Ignoring the school level results in a too high standard error of the slope
estimator for a class level predictor variable, and again a too high p-value,
but does not have an effect on the standard error of the slope estimator for
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Table 2
Results for the Three Level Model and Models Ignoring a Level of Nesting

pupils in classes in schools pupils in classes pupils in schools

estimate SE p estimate SE p estimate SE p

Pupil level predictor variable

�
0

0.127 0.076 0.127 0.056 0.127 0.076

�
1

0.128 0.059 0.029 0.128 0.059 0.029 0.128 0.062 0.039
2
v� 0.029 — 0.039
2
u� 0.113 0.142 —
2
e� 0.863 0.863 0.966

Class level predictor variable

�
0

0.175 0.103 0.175 0.070

�
1

0.165 0.084 0.049 0.165 0.099 0.096
2
v� 0.070 —
2
u� 0.096 0.166
2
e� 0.799 0.799

School level predictor variable

�
0

–0.016 0.118 –0.016 0.118

�
1

0.302 0.167 0.071 0.302 0.167 0.071
2
v� 0.052 0.059
2
u� 0.078 —
2
e� 0.958 1.030

Note.  The design is balanced with n
1
 = n

2
 = n

3
 = 10.
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a pupil level predictor variable.  In the next two sections it will be shown that
these results hold for balanced designs in general.

Effect of Ignoring a Level of Nesting on Estimated Variance Components

The estimation method IGLS will be used to explore the effect of ignoring
a level of nesting on the estimators of the variance components.  IGLS
produces maximum likelihood estimates in the normal case.  It iterates
between two steps.  In the first step the fixed effects are estimated from the
current estimates of the (co-) variance components using Generalized Least
Squares (GLS):

(9) ˆ − − −′= 1 1 1(X'V X) X V Y� ,

where � is the vector of regression coefficients, X is the design matrix for
the fixed part, Y is the response vector, and V is the covariance matrix of the
responses.  The raw residual matrix is calculated as = −Y Y X� � .  The
crossproduct matrix =*Y YY'� �  has expectation V.  Define Y** = vec(Y*),
where vec is the vector operator stacking the columns of Y* underneath each
other.  Then, E(Y**) = Z*�, where Z* is the design matrix for the random part
and � is the vector of (co-) variance components.  Var(Y**) = V* = V � V,
where � is the Kronecker product.  In the second step the (co-) variance
components are estimated from the current estimates of the fixed effects,
again using GLS:

(10) ˆ .
− −−′ ′= 1 1* * * 1 * * **(X V X ) X V Y�

The estimation procedure iterates between these two steps until
convergence is achieved.  For balanced designs as described below Equation
5 and models with fixed slopes convergence is reached after one iteration
and closed form estimators for the fixed effects and variance components
are available.

For Model 1 with three levels of nesting application of Equation 10 gives

(11)

2

1 1
2

1 1 2 1 22
2 21 2 3 1 2

1 2 1 2

ˆ ( 1) ( 1)
1

ˆ ( 1) ( 1) ( 1)
( 1)( 1)ˆ ( 1) ( 1)

v s c

u s c p

e c p

n SSC n SSC
n SSC n n SSC n n SS

n n n n n
n n SSC n n SS

�

�

�

   − − −   = − − + − − −   − −   − − + −   

,
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where SSC
s
, and SSC

c
 are the sums of squares and crossproducts of

residuals of pupils within the same school and class, respectively, and SS
p
 is

the sums of squares of the residuals.  Ignoring the class level gives

(12)
2

2
11 3 1

ˆ 1
ˆ ( 1)

s pv

s pe

SSC SS
SSC n SSn n n

�

�

  − 
=     − +−   

�

�� � ��

.

Note that the variance components and sample sizes are indicated with a tilde
in order to distinguish them from those for three levels of nesting.  In this case

3n�  is the number of schools, and 1n� is the number of pupils per school, that
is 1n�  = n

1
n

2
.  Ignoring the school level results in

(13)
2

2
11 2 1

ˆ 1
ˆ ( 1)

c pu

c pe

SSC SS
SSC n SSn n n

�

�

  − 
=     − +−   

�

�� � ��

where 2n�  = n
2
n

3
 is the total number of classes, and 1n�  = n

1
 is the number of

pupils per class.
Now it can be easily shown that ignoring the class level results in

(14)

2 2 21

1 2

2 2 21 2 1

1 2

1ˆ ˆ ˆ
1

ˆ ˆ ˆ
1

v v u

e e u

n

n n
n n n

n n

� � �

� � �

−= +
−
−= +
−

�

�

.

So, the estimated variance component at the class level is distributed over the
two other estimated variance components.  For any fixed n

1
, the fraction of

2ˆ u�  that is added to 2ˆ e�  is equal to 0 if  n
2
 = 1, and increases if n

2
 increases.

For any fixed n
2
, the fraction of 2ˆ u�  that is added to 2ˆ e�  is equal to 1 if  n

1
 = 1

and decreases if n
1
 increases.  Of course, the change in the estimated

variance components at the pupil and school level is low if 2ˆ u�  is low.
The situation is less complicated when ignoring the school level:

(15)
2 2 2

2 2

ˆ ˆ ˆ
ˆ ˆ

u v u

e e

� � �

� �

= +
=

�

�
.

In this case, the variance component at the school level is added to that at
the class level, and the variance component at the pupil level remains
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unchanged.  These results are in agreement with those of Tranmer and Steel
(2001) for the moment estimator, and those of Hutchison and Healy  (2001)
in a random effects ANOVA.

It should be noted that relations of Equations 14 and 15 hold for any
number and type of predictor variables (i.e. continuous or binary) as long as
IGLS is used.  A drawback of this estimation method is that it produces
biased estimates for small samples.  This problem may be overcome by
using Restricted Iterative Generalized Least Squares (Goldstein, 1989).
For this estimation method the crossproduct matrix ′=*Y YY� � has
expectation V – X(X�V-1X)-1X�.  Consequently, closed form relations between
estimated variance components in models without or with ignoring a level of
nesting depend on the values of the predictor variables, and are not that easily
derived.  For large sample sizes, however, these relations may be expected to
be approximately equal to relations of Equations 14 and 15 for IGLS.

Effect of Ignoring a Level of Nesting on Test Statistics

Ignoring a level of nesting also has an effect on the variance of the slope
estimator.  Table 3 shows this variance, 1

ˆ ˆvar( )� , for a predictor variable that
varies at the pupil, class, or school level.  As in the numerical example only
the cases where the ignored level is not the level at which the predictor
variable varies are considered.  The third column of Table 3 shows the

1
ˆ ˆvar( )�  expressed in terms of 2 2 2

1 2 3
ˆ ˆ ˆ, , , , ,e u v n n n� � � � � �� � � , which are the estimated

variance components and the sample sizes when ignoring a level of nesting.
The relationships between these and their counterparts in a three level model
depend on the ignored level and can be found in the previous section.
Substituting these relationships into the 1

ˆ ˆvar( )�  expressed in terms of
2 2 2

1 2 3
ˆ ˆ ˆ, , , , ,e u v n n n� � � � � �� � �  gives the 1

ˆ ˆvar( )�  expressed in terms of 2 2 2
1 2 3ˆ ˆ ˆ, , , , ,e u v n n n� � �

as found in the last column of Table 3.

Pupil Level Predictor Variable

As follows from Table 3 the 1
ˆ ˆvar( )�  for a pupil level predictor variable

is equal to 2 2
1 2ˆ /( )e xn n s�  if the school level is ignored, which is exactly equal

to the 1
ˆ ˆvar( )�  in a three level model, see Table 1.  Thus, ignoring the school

level does not have an effect on the 1
ˆ ˆvar( )�  of a pupil level predictor variable

in case of a balanced design.
Table 3 also shows that the 1

ˆ ˆvar( )� for a pupil level predictor variable is
equal to
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( )2 2 21 2 1
1 2 3

1 2

ˆ ˆ /
1e u x

n n n
n n n s

n n
� �

 −+ − 

if the class level is ignored.  The term

21 2 1

1 2

ˆ
1 u

n n n

n n
�

−
−

does not appear in the numerator of the 1
ˆ ˆvar( )�  for three levels of nesting,

see Table 1.  As written below Equation 14, this term increases if n
2

increases and if n
1
 decreases.  It is also larger if 2ˆ u�  is larger.  So, ignoring

the class level leads to a larger 1
ˆ ˆvar( )� , and hence to a smaller test statistic

Table 3
Estimated Variance of the Slope Estimator with Ignoring a Level of
Nesting

Level of Ignored level 1
ˆ ˆvar( )� in terms of 1

ˆ ˆvar( )� in terms of
variation 2 2 2

1 2 3
ˆ ˆ ˆ, , , , ,e u v n n n� � � � � �� � �

2 2 2
1 2 3ˆ ˆ ˆ, , , , ,e u v n n n� � �

pupil school
2

2
1 2

ˆ
e

xn n s

��

� �

2

2
1 2 3

e

xn n n s

�

pupil class
2

2
1 3

ˆ
e

xn n s

��

� �

2 21 2 1

1 2
2

1 2 3

ˆ ˆ
1e u

x

n n n

n n

n n n s

� �
−+
−

class school
2 2

1
2

1 2

ˆ ˆ
e u

x

n

n n s

� �+ �� �

� �

2 2 2
1

2
1 2 3

ˆ ˆ ˆ( )e u v

x

n

n n n s

� � �+ +

school class
2 2

1
2

1 3

ˆ ˆ
e v

x

n

n n s

� �+ �� �

� �

2 2 2
1 1 2

2
1 2 3

ˆ ˆ ˆe u v

x

n n n

n n n s

� � �+ +

Note. 2

xs  is the variance of the predictor variable.
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for �
1
 and therefore a lower power for the statistical test of the effect of the

pupil level predictor variable on the outcome.
To gain insight in the magnitude of loss in power some calculations were

done.  Assume a three level data structure with �
pupil

 = 0.7, �
class

 = 0.15, and
�

school
 = 0.15, and sample sizes n

1
 = 4 pupils per class and n

2
 = 4 classes per

school.  The predictor variable varies at the pupil level and is binary with
coding scheme –0.5 and +0.5 (for instance, gender).  Aim is to detect a small
effect size with power 1 – � = 0.9 at a significance level of � = 0.05 in a two
sided test.  From Equation 8 it follows that � = ES × 2 2 2

v u e� � �+ +  = 0.2 ×
2 2 2
v u e� � �+ + , and from Equation 7 it follows that

(16) 2 2
1 1 / 2 1ˆvar( ) /( )z z� �
� − −= ∆ +  = 0.22 × ( 2 2 2

v u e� � �+ + )/(1.96 + 1.28)2.

From Table 1 it follows that

(17) 1
ˆ ˆvar( )� = 2 2

1 2 3/( )e xn n n s� = 2 2 2
1 2 34 ( ) /( )pupil e u v n n n� � � �× × + +

since 2
xs  = 0.25 for a binary predictor coded –0.5 and +0.5, and

2 2 2 2( )e pupil e u v� � � � �= + + , see Equation 5.  The 1
ˆ ˆvar( )�  as given by Equation

17 should be equal to 1
ˆ ˆvar( )�  as calculated from Equation 16 in order to

reach the desired power.  The number of schools, n
3
, is the only unknown

since the term 2 2 2( )e u v� � �+ +  in Equations 16 and 17 cancels out.  For the given
n

1
, n

2
, and �

pupil
 the number of schools is almost equal to 46 (n

3
 = 45.97).

Assume now that the class level is ignored.  The sample sizes and values of
variance components are plugged into the 1

ˆ ˆvar( )�  ignoring the class level as
given in Table 3 and 1 – � is subsequently calculated from Equation 7.  In this
case 1 – � = 0.850, which is somewhat lower than the nominal power
obtained without ignoring the class level.

These calculations were performed for different values of the sample sizes
and the intra-pupil, -class, and -school correlation coefficients.  Table 4 shows
results for three different values of the number of pupils per class (n

1
 = 4, 8,

or 16), three different values for the number of classes per school (n
2
 = 4,

8, or 16), and three different values of the intra-pupil correlation coefficient
(�

pupil
 = 0.7, 0.8, or 0.9).  For each value of �

pupil
, the three values of the intra-

class correlation coefficient were chosen such that �
class

 = � (1 – �
pupil

),
where � = 0.5, 0.7, or 0.9.  The intra-school correlation coefficient follows
from �

school
 = 1 – �

pupil
 – �

class
.  These values were chosen to represent the

fact that the � at the bottom level is generally (much) larger than the � at the
intermediate level, which in its turn is generally (much) larger than the � at
the top level (see Gulliford, Ukoumunne, & Chinn, 1999; Siddiqui, Hedeker,
Flay, & Hu, 1996, for example values of the �s at different levels).
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Table 4 shows that ignoring the class level has some effect on the power,
but this effect is not very tremendous for the chosen sample sizes and values
of the intra-pupil, -class, and -school correlation coefficients.  The lowest
power level is 0.792, which is 12% lower than the nominal power level of 0.9
that would have been obtained with three levels of nesting.  As follows from
Table 4 the power increases with increasing �

pupil
 (and hence decreasing �

class
)

and n
1
, and with decreasing �

class
 and n

2
.  This is in concordance with what is

to be expected from the change in variance components given by Equation 14.

Class Level Predictor Variable

As follows from Table 3 the 1
ˆ ˆvar( )�  for a class level predictor variable

is equal to ( )2 2 2 2
1 1 2 3ˆ ˆ ˆ( ) /e u v xn n n n s� � � + +   if the school level is ignored.  The term

2
1 ˆ vn �  does not appear in the numerator of the 1

ˆ ˆvar( )�  for three levels of
nesting, see Table 1.  So, ignoring the school level results in a higher 1

ˆ ˆvar( )�

and thus in a lower power of the test of the effect of a class level predictor
on the outcome.  The power decreases with increasing n

1
 and 2ˆ v� , but does

not depend on n
2
.

To gain insight in the magnitude of loss in power, the same calculations as
in the previous subsection were performed, again using a small effect size, a
significance level � = 0.05, and a nominal power level of 0.9.  The results are
given in Table 5.  As follows from Table 5 the consequences of ignoring the
school level on the power of the test of a class level predictor variable are not
trivial.  Power levels may be as low as 0.682, which is 24% smaller than the
nominal power level of 0.9.  Tables 5 shows that the power increases with
increasing �

pupil
 and �

class
 (and hence decreasing �

school
), and with decreasing

n
1
, but does not depend on n

2
.  This is in concordance with what is to be

expected from the change in variance components given in Equation 15.

School Level Predictor Variable

The 1
ˆ ˆvar( )�  of a school level predictor variable is equal to

2 2 2 2
1 1 2 1 2 3ˆ ˆ ˆ( ) /( )e u v xn n n n n n s� � �+ +  if the class level is ignored, see Table 3.

Comparison with Table 1 shows that it is equal to the 1
ˆ ˆvar( )�  without

ignoring the class level.  Thus, ignoring the class level does not have an effect
on 1

ˆ ˆvar( )�  of a school level predictor variable in the case of a balanced
design.
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A Note on Repeated Measures Data

The values of �
pupil

, �
class

, and �
school

 that were used in Tables 4 and 5 were
chosen to represent the fact that for multilevel data with individuals nested
within clusters within higher order clusters the � at the bottom level is generally
(much) larger than the � at the intermediate level, which in its turn is generally
(much) larger than the � at the top level.  This fact does not hold for three-level
models for repeated measures data where the bottom, intermediate, and top
levels represent repeated measures, persons, and clusters (e.g. therapy
groups, or schools).  With such data individual differences account for
substantial variation among all the levels modeled, and values of � at the
intermediate (person) level as large as 0.5 of even larger are not unrealistic.

The effects of ignoring a level of nesting in a repeated measures study
are similar to those presented in Equations 14-15 and Tables 3-5 with the
terms pupil, class, and school replaced by the terms repeated measure,
person, and cluster, respectively.  It should, however, be noted that these
results only hold if the errors e

ijk
 are uncorrelated, an assumption that does

not always hold for repeated measures data.  It is uncommon to ignore the
person level in a repeated measures study.  The power when ignoring the
cluster level may be calculated as explained in the first subsection of this
section with the 1

ˆ ˆvar( )�  for a top level predictor used in Equation 17.  For
instance, assume that � = 0.4 at the repeated measures level, � = 0.5 at the
person level, n

1
 = 4 measurements per person are taken, and n

2
 = 40 persons

per cluster are available.  Then, n
3
 = 15.76 clusters would be needed to detect

a small effect size of a binary person level predictor with power 1 – � = 0.9
and a significance level � = 0.05 in a two sided test.  Ignoring the cluster level
would result in a power of 0.851, a loss in power of 5.4%.

Unbalanced Designs

It should be noted that a balanced design was assumed in the previous
sections since that leads to relatively simple formulae for the change in
variance components (Equations 14 and 15) when ignoring a level of nesting
and to relatively simple formulae for the 1

ˆ ˆvar( )�  in a three or two level design
(Tables 1 and 3).  Moreover, a balanced design leads to a smaller 1

ˆ ˆvar( )�

than a design with the same total number of pupils but with varying class and
school sizes (Manatunga, Hudges, & Chen, 2001) and thus to a higher power
for the test of the effect of a predictor variable on the outcome.

The assumption of a balanced design is not always met in practice.  In
repeated measures designs the number of repeated measures per person
may be under experimental control, but in educational studies, the number of
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pupils per class and the number of classes per school varies by nature.  If
sample sizes vary, their mean values may be substituted into Equations 14
and 15 and the formulae in Tables 1 and 3, which then only hold
approximately.  The approximation is, of course, less accurate if the
variability in sample sizes is large.

In order to show the effects of ignoring a level of nesting on parameter
estimates and their standard errors in case of an unbalanced design, data sets
where generated and analyzed as described for the numerical example for
the balanced design, using the same parameter values.  The numbers of
pupils per class and the numbers of classes per school were drawn from the
normal distribution with mean 10 and standard deviation 5.  The number of
schools was equal to ten.  The results of the data analyses with three and two
levels of nesting are given in Table 6.  The effects of ignoring a level of
nesting on estimated variance components are similar to those in a balanced
design: the estimated variance components at both the school and pupil level
increase if the class level is ignored, and only the estimated variance
component at the class level increases if the school level is ignored.  Ignoring
a level of nesting also has an effect on the estimated slopes, especially of
those of class and school level predictors.  Furthermore, the standard error
of the estimated slope of a school level predictor is slightly overestimated if
the class level is ignored.  As was shown previously the latter two results did
not hold for balanced designs.  From the examples in Table 6 it should be clear
that with an unbalanced design one should take care not to ignore a level of
nesting in a multilevel model since otherwise the point estimates and
associated standard errors of many, if not all, model parameters may be
incorrect and hence conclusions drawn from p-values are not to be trusted.

Conclusions and Discussion

This article explored the consequences of ignoring a top or intermediate
level in a three level data structure.  Analytical results showed that, in case
the top level is ignored, the variance component at the top level is added to
that at the intermediate level while the variance component at the bottom
level remains unchanged.  The variance component at the intermediate level
is distributed over the variance components at the top and bottom level if the
intermediate level is ignored.  This distribution depends on the sample sizes
at the intermediate and bottom level.

Ignoring a level of nesting also has an effect on the power level of a
statistical test of the effect of a predictor variable on the outcome.  Only the
cases in which the predictor variable of interest does not vary at the ignored
level were considered.  Analytical results showed that ignoring the top level
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Table 6
Results for the Three Level Model and Models Ignoring a Level of Nesting

pupils in classes in schools pupils in classes pupils in schools

estimate SE p estimate SE p estimate SE p

Pupil level predictor variable

�
0

0.115 0.080 0.136 0.045 0.113 0.078

�
1

0.086 0.052 0.110 0.084 0.052 0.110 0.084 0.055 0.123
2
v� 0.046 — 0.052
2
u� 0.088 0.139 —
2
e� 0.768 0.767 0.849

Class Level Predictor Variable

�
0

–0.051 0.128 –0.058 0.058

�
1

0.123 0.091 0.178 0.085 0.115 0.463
2
v� 0.139 —
2
u� 0.152 0.296
2
e� 0.757 0.757

School Level Predictor Variable

�
0

–0.126 0.091 –0.133 0.093

�
1

0.253 0.182 0.202 0.195 0.186 0.325
2
v� 0.053 0.069
2
u� 0.087 —
2
e� 0.784 0.861

Note.  The design is unbalanced with n
1
 ~N(10,5), n

2
 ~N(10,5), and n

3
 = 10.
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does not have an effect on testing the effect of a bottom level predictor
variable, while power would be to low if the effect of an intermediate level
predictor variable is to be tested.  The loss in power becomes small if n

1
 is

small and/or if the variance component at the top level is small in relation to
the variance components at the intermediate and bottom level.  Ignoring the
intermediate level variable does not have an effect on the results of the
statistical test of a top level predictor variable, while power would be too low
if the effect of a bottom level predictor variable is to be tested.  In this case,
the loss in power becomes small if n

1
 is large and/or if n

2
 is small and/or if

the variance component at the intermediate level is small in relation to the
variance component at the bottom level.  In conclusion: ignoring a level of
nesting in a three level model does not create substantial problems with
respect to the test of a predictor variable if the variability of the outcome
variable at the ignored level is relatively small, and does not create problems
at all if the predictor variable of interest does not vary at the level immediately
below the ignored level.

These findings, however, only hold for balanced designs.  Analyses of data
sets showed that for unbalanced designs not only the standard error of the
estimated effect of a predictor variable on the outcome may be overestimated,
also the estimated effect itself may be incorrect.  So with unbalanced designs
one should expect the estimates and associated standard errors of many, if not
all, model parameters to be incorrect if a level of nesting is ignored in the data
analysis, and hence the conclusions drawn are not to be trusted.

For simplicity a model with just one predictor variable was used in this
article, but it can be shown that the results also hold for models with more
predictor variables as long as each predictor variable varies at just one level
of the multilevel data structure.  A predictor variable x

ijk
 that varies at more

that one level may be split up into orthogonal components that each vary at
just one level (Neuhaus & Kalbfleisch, 1998).  In a three level model the
orthogonal components are calculated as .ijk jkx x− , . ..jk kx x− , and ..kx .  The
first varies within classes and has zero class mean, the second varies
between classes within school and has zero school mean, and the third varies
between schools.  As Neuhaus and Kalbfleisch (1998) point out the effects
of these three components of the predictor variable on the outcome are not
necessarily the same.  They show that a model that incorrectly assumes
these effects are the same can lead to very misleading results of the effect
of the predictor variable on the outcome.

Of course the results only hold if the same predictors are used in the
model with three levels of nesting and in the model with ignoring a level of
nesting.  The situation becomes more complex if predictor variables at the
ignored level are also removed from the multilevel model since then the
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variance components, and hence standard errors of regression coefficients
estimators, are not only affected by ignoring the level of nesting but also by
the removal of these predictor variables from the multilevel model (Snijders
& Bosker, 1994).
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