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Abstract 
This simulation study examined a large number of computerized adaptive testing (CAT) termination 
rules using the item response theory framework. Results showed that longer CATs yielded more 
accurate trait estimation, but there were diminishing returns with a very large number of items. The 
authors suggest that a minimum number of items should always be used to ensure the stability of 
measurement when using CATs. Standard error termination performed quite well in terms of both a 
small number of items administered and high accuracy of trait estimation if the standard error used was 
low enough. Fixed-length CATs did not perform better than their variable-length termination 
counterparts; previous findings stating that variable-length CATs are biased were the result of a 
statistical artifact. The authors discuss the conditions that led to this artifact occurring. 
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Termination Criteria in Computerized Adaptive Tests:  
Variable-Length CATs Are Not Biased 

Computerized adaptive tests (CATs) are becoming increasingly popular in a variety of 
domains (Fliege et al., 2005; Simms & Clark, 2005; Triantafillou, Georgiadou, & Economides, 
2007). Because of computer availability and advances in item response theory (IRT; Weiss & 
Yoes, 1991), adaptive testing is now used in a myriad of settings. CATs tailor the test to each 
individual examinee in order to obtain accurate measurement across the entire latent trait 
continuum. CATs also are advantageous over non-adaptive tests because CATs can administer 
fewer items to examinees while maintaining the same quality of measurement as non-adaptive 
tests (Weiss, 1982). A termination or stopping rule is what determines the length of the CAT. 
Although some studies have tested a few possibilities for termination (e.g., Dodd, Koch, & De 
Ayala, 1993; Gialluca & Weiss, 1979; Wang & Wang, 2001), no single study has thoroughly 
compared a large number of CAT termination criteria using multiple item banks. This study 
examined numerous termination rules with four different item banks to determine which 
termination rules led to the best CAT estimation of a latent trait. 

Modern CAT uses IRT as a statistical framework. IRT models the probability of responses to 
a test item based on a person’s underlying latent trait/ability, or θ. While there are a wide variety 
of IRT models, this study used the unidimensional 3-parameter logistic model (3PL) for 
dichotomously scored items. The mathematical form of this model is 
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where i is an item index, p is a person index, x is a person’s response to an item (1 for a keyed 
response, 0 for a non-keyed response), D is the multiplicative constant 1.702, a is the item 
discrimination parameter, b is the item difficulty parameter, and c is the lower asymptote 
(pseudo-guessing) parameter (Birnbaum, 1968; Weiss & Yoes, 1991). A plot of the probability 
of a keyed response on θ has a familiar ogive shape and is called an item response function 
(IRF). The probability of responding in the keyed direction depends on the person taking the 
item and item characteristics. Increasing b will decrease the probability of a person responding in 
the keyed direction. Increasing a will cause the probability of responding in the keyed direction 
to change more quickly when θ values are near b, thus increasing the slope of the IRF for θ 
values near b. Increasing the lower asymptote c parameter increases the probability of a keyed 
response for low values of θ but only slightly increases the probability of response for high 
ranges of θ. IRT users can estimate the parameters of this model with marginal maximum 
likelihood using computer programs such as XCALIBRE (Assessment Systems Corporation, 
1996) and BILOG (Mislevy & Bock, 1991). For a summary on the basics of IRT, see Embretson 
and Reise (2000) or De Ayala (2009). 

CATs require six main components: (1) a response model, (2) an item bank of IRT-calibrated 
items, (3) an entry rule, (4) an item selection rule, (5) a method for scoring θ, and (6) a 
termination rule (Weiss & Kingsbury, 1984). IRT is a good statistical model for CAT, because 
there are a variety of options available in the IRT framework to fulfill these requirements. There 
has been substantial research on IRT item parameter estimation (e.g. Harwell, Stone, Hsu, & 
Kirisci, 1996), CAT entry rules (e.g. Gialluca & Weiss, 1979), item selection (e.g. Hau & Chang, 
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2001), and θ scoring methods (e.g. Wang & Vispoel, 1998). Much less work has been conducted 
in the area of CAT termination. 

The two most popular termination rules thus far in the literature are fixed-length termination 
and standard error termination (Weiss, 1982; Gushta, 2003). Fixed-length CATs simply 
terminate when an examinee has taken a pre-specified number of items. The simplicity of this 
termination rule and its similarity to paper-and-pencil tests has made it popular in applied 
settings. Some researchers even argue that variable-length CATs are more biased than fixed-
length CATs (Chang & Ansley, 2003; Yi, Wang, & Ban, 2001). The present study tested whether 
the result that fixed-length CATs are less biased than variable-length CATs holds under 
conditions designed to control for alternative explanations. 

Another popular termination rule for CATs is standard error (SE) termination (Weiss & 
Kingsbury, 1984). According to this termination rule, the examinee continues to take test items 
until the examinee’s θ estimate reaches a specified level of precision, as indicated by its SE, 
resulting in equiprecise measurement across examinees. The SE of a θ estimate when using 
maximum likelihood scoring is calculated from the inverse of the square root of the second 
derivative of the negative log likelihood function at the θ estimate with respect to θ, or 
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whereθ̂  is the current θ estimate and log L is the log likelihood function (Samejima, 1977). The 
log likelihood function is defined as 
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where i is an item index, n is the number of items to which a person has responded, P is the 
probability of a person responding in the keyed direction (Equation 1), and Q is 1−P (Embretson 
& Reise, 2000, Ch. 7). When a person has a great deal of psychometric information in their 
responses (i.e., has answered questions with difficulties near true θ), the log likelihood function 
will be highly curved and steep at the θ estimate (the maximum of the likelihood). This curvature 
causes a decrease the SE around the θ estimate. Researchers have found that SE termination 
performs well in terms of accurate estimation of θ (Dodd, Koch, & De Ayala, 1993; Dodd, Koch, 
& De Ayala, 1989; Revuelta, & Ponsoda, 1998; Wang & Wang, 2001) if the information in the 
item bank allows a specific value to be attained at all levels of θ. 

A third termination rule that has been studied in a limited fashion is the minimum 
information termination rule. This rule states that a CAT should end when there are no items 
remaining in the test bank that can provide more than a specified minimal amount of 
psychometric information at the current θ estimate (Gialluca & Weiss, 1979; Maurelli & Weiss, 
1981). Fisher item information I is calculated by 
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where i is an item index and P′ is the first derivative of the IRF (Samejima, 1977). Most item 
selection criteria in CAT involve choosing an item with high information at the current θ 



 

-5- 

estimate. The theory behind minimum information termination is that if there are no remaining 
items that will yield information about the examinee, the test should terminate for the sake of 
efficiency. While some research has demonstrated that this termination rule provides a great deal 
of efficiency over conventional tests (Brown & Weiss, 1977), other research has shown this 
method to be inferior to other termination methods. Dodd, Koch, and De Ayala, (1989, 1993) 
found that minimum information performed slightly worse than fixed SE in terms of correlation 
with true θ. The values of minimum information that they used, however, were relatively high 
(.45 to .5, versus .01 and .05 used by Brown & Weiss). This could have led to premature 
termination of CATs and inferior measurement.  

A fourth termination rule that has received almost no research attention is the θ convergence, 
or change in θ, criterion. Because of the addition of new psychometric information, a person’s θ 
estimate changes after answering each item in a CAT. Changes in θ are large at the beginning of 
a CAT and become smaller as the CAT tailors the test to the person and converges on a θ 
estimate (Weiss & Kingsbury, 1984). The convergence of a θ estimate could provide a good 
stopping rule for a CAT. Hart, Cook, Mioduski, Teal, and Crane (2006) and Hart, Mioduski, and 
Stratford (2005) investigated a hybrid CAT termination rule that combined SE and θ 
convergence. The researchers concluded that the convergence of θ yielded good θ  estimates for 
a CAT. 

Purpose 
This study used simulation to investigate various termination rules for CATs. Studies in the 

past have investigated only a few termination rules, typically fixed-length and either SE or 
minimum information termination. This study used several conditions of four basic termination 
rules (SE, minimum information, change in θ, and fixed length) and two combinations of SE and 
minimum information termination. These combinations were used in order to take advantage of 
both high measurement precision where it was possible and terminating quickly when high 
precision was probably not possible. The four different item banks in this study were used to 
examine the conditions in which a given termination rule was superior or inferior in its ability to 
recover true θ compared to other termination conditions.  

Method 
Item Banks 

There were four item banks in this study: (1) a flat information bank with 500 items, (2) a 
peaked information bank with 500 items, (3) a flat information bank with 100 items, and (4) a 
peaked information bank with 100 items. Figure 1 contains the information functions for these 
four banks. These item banks have several notable features. First, total information on the 
negative end of θ was somewhat lower than at the higher (positive) end of θ. This occurs because 
the c parameter (lower asymptote) in the 3PL decreases the slope of an IRF in the low ranges of 
the function; decreases in slope lead to lower item information. Second, the 500-item banks have 
a great deal of information across the entire range of θ. These banks should be able to satisfy all 
of the SE criteria used as stopping rules for most of the θ range. An information value of 20.67, 
for example, corresponds to a model-predicted SE of 0.22 [1/(20.67)1/2 = 0.22]. Both of the 500-
item banks had model-predicted information values greater than 21 for the entire θ continuum. 
Finally, the smaller item banks had generally low levels of information. These item banks could 
not satisfy some of the lower SE termination criteria. 
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Figure 1. Bank Information Functions for the Four Item Banks 

The a parameters for all four banks were generated to approximate a log normal distribution 
with a log mean of −0.1 and a log standard deviation of 0.3. This translated into mean 
discrimination values of about a = 0.94 with a standard deviation of about 0.28. The b 
parameters for the two flat banks were generated from a uniform distribution with a minimum of 
−4 and a maximum of 4. The b parameters for the peaked banks came from a mixed distribution; 
300 and 50 items in the large and small banks, respectively, came from a uniform distribution 
with a minimum of −4 and a maximum of 4. The remainder of the b parameters for these two 
banks came from a standard normal distribution. The c parameters for all item banks came from 
a mixture of uniform distributions, one with a minimum of 0.1 and a maximum of 0.225, and the 
other with a minimum of 0.075 and a maximum of .35. These item parameter distributions were 
based on estimated parameter distributions in the achievement testing domain (Chen & 
Ankenman, 2004; Wang, Hanson, & Lau, 1999). 
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Simulees 
In order to evaluate the performance of the stopping rules along the θ continuum, this study 

used 1,000 simulees at 13 evenly spaced points on θ from −3 to 3. Thus, 1,000 simulated people 
with true θ values of −3 took each CAT, 1,000 simulees with true θ values of −2.5 took the CAT, 
and so on. Each level of θ had 1,000 response vectors.  

Data Generation and CAT Simulation 
Based on the item parameters and θ, each θ level had a model-predicted probability of 

responding in the keyed direction to an item. The response simulation compared this probability 
of response with a random uniform deviate between 0 and 1 in order to determine how this 
simulee would respond to the item. If the probability of response in the keyed direction was 
greater than the random number, the person responded in the keyed direction. If the probability 
of response in the keyed direction was less than the random number, the person responded in the 
non-keyed direction. POSTSIM3, a computer program for post-hoc CAT simulation, simulated 
the CATs after the generation of the four full data sets (Assessment Systems Corporation, 2008). 
POSTSIM3 allows the user to conduct a simulated CAT based on specified item parameters and 
a person’s full set of item responses. Estimated CAT θ values for each termination condition 
from POSTSIM3 were then compared to the true θs. 

CAT Conditions 
The following are the conditions that this research used: 

1. Starting rule. All examinees started with an initial θ of 0. This made the start of the CAT 
equal for all conditions and eliminated chance starting variation from affecting the results 
of the study. 

2. Item selection rule. This study used maximum Fisher information to select items for the 
CAT. POSTSIM3 administered the item with the highest information at the current 
estimate of θ for each simulee. This rule maximizes the efficiency of the CATs by 
reducing the SE of θ [SE(θ )] as quickly as possible. 

3. θ estimation. All conditions used maximum likelihood (ML) estimation for θ. If the 
simulee did not have a mixed response vector (i.e., had all keyed or all non-keyed 
responses), ML scoring does not yield a finite maximum for the likelihood function. The 
CAT algorithm increased (all keyed responses) or decreased (all non-keyed responses) θ 
by a fixed step size of θ  = 0.5 for the next θ estimate when the simulee had a non-mixed 
response vector. This rule was used to obtain a mixed response vector relatively quickly, 
and ML scoring was used to estimate θ after there was a mixed response vector. This 
research used ML estimation instead of Bayesian methods because previous research has 
demonstrated that Bayesian θ estimation methods produce biased θ estimates when true θ 
is extreme (Guyer, 2008; Stocking, 1987; Wang & Vispoel, 1998; Weiss & McBride, 
1984). 

4. Termination rules. This was the focus of the current study. For each item bank, the same 
simulated response data were run 14 times, with each run using a different termination 
rule. The following were the termination conditions: 
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1) SE(θ ) was below 0.385 (analogous to a reliability of 0.851

2) SE(θ ) was below 0.315 (analogous to a reliability of 0.90) with a maximum of 100 
items. 

) with a maximum of 100 
items. 

3) SE(θ ) was below 0.220 (analogous to a reliability of 0.95) with a maximum of 100 
items. 

4) All items not yet administered at the current θ estimate had less than 0.2 information 
with a maximum of 100 items. 

5) All items not yet administered at the current θ estimate had less than 0.1 information 
with a maximum of 100 items. 

6) All items not yet administered at the current θ estimate had less than 0.01 information 
with a maximum of 100 items. 

7) Either when the SE(θ ) was below 0.315 or when all items not yet administered had 
less than 0.1 information at the current θ estimate with a maximum of 100 items, 
whichever occurred first. 

8) Either when the SE(θ ) was below 0.220 or when all items not yet administered had 
less than 0.01 information at the current θ estimate with a maximum of 100 items. 

9) Absolute change in θ estimate was less than 0.05 with a minimum of 11 items and a 
maximum of 100 items. The minimum number of items was to ensure that the CAT did 
not terminate prematurely. 

10)  Absolute change in θ estimate was less than 0.02 with a minimum of 11 items and a 
maximum of 100 items.  

11)  Fixed-length CAT with the number of items equal to the mean number of items 
required in Condition 2. 

12)  Fixed-length CAT with the number of items equal to the mean number of items 
required in Condition 5.  

13)  Fixed-length CAT with the number of items equal to the mean number of items 
required in Condition 7. 

14)  Fixed-length CAT with the number of items equal to the mean number of items 
required in Condition 9. 

The fixed-length conditions were used here in order to compare fixed-length CATs with 
variable-length CATs using a comparable number of items. 

                                                           
1 In classical test theory, the standard error of measurement (SEM) is approximated with the 
equation SEM = sobs (1− ρxx)½, where sobs is the standard deviation of the observed scores and ρxx 
is the reliability. Assuming that the standard deviation of θ is 1, specifying a reliability of .85 for 
ρxx gives a standard error of .385. 
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Dependent Variables 
Five dependent measures were used to evaluate the performance of the CATs. 

1. Length of the CAT. This was simply the number of items the CAT required to terminate. 
Although this dependent variable was not particularly interesting for the fixed-length 
conditions, it was important for the variable-length conditions. This dependent variable 
was a measure of the efficiency of the CAT. 

2. Bias. This statistic was the signed mean difference between the CAT estimated θ  and 
true θ. Bias was calculated for each of the 13 θ values and combined across all values of 
θ. It was calculated by  
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where N is the number of people at a θ point, j is a person index, jθ  is a person’s true θ, 

an jθ̂  is a person’s CAT estimated θ. 

3. Root mean squared error (RMSE). This statistic was a measure of absolute difference 
between the CAT estimated and true θ. It was calculated by 
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4. Pearson correlation between estimated and true θ. This is the familiar correlation 
between the CAT estimated θ values and the true θ values. The equation for the Pearson 
correlation r is 
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5. Kendall’s Tau rank order correlation between estimated and true θ. This measure 
indicated how similarly each of the conditions ranked the simulees. Kendall’s Tau is 
sensitive to changes in the ordering of θ. The equation for Tau is 

  4 1
( 1)

P
N N

τ = −
−

  (8) 

where P is the sum of greater rankings in variable 2 after a given observation when the 
observations are ordered by the first variable. Kendall’s Tau was used in addition to the 
familiar Pearson correlation because Tau is more sensitive to small changes in the 
ordering of θ than the Pearson correlation. 

6. Coverage. This variable was the number of times that true θ fell within ±2 SEs of the 
CAT θ estimate. Coverage is a measure of the accuracy of the SEs. The expected 
coverage should be about 950 out of 1,000 (i.e. 95% confidence interval), so large 
deviations from this number indicate that the condition produced inaccurate SEs. 
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Results 
Bank 1  

Table 1 contains the major results from Bank 1. Several of the conditions produced identical 
results. Conditions 5, 6, and 12 all gave the maximum number of items to examinees. These 
conditions, thus, all administered the same tests. Conditions 11 and 13 were also equivalent, 
because these CAT conditions were the same fixed length with the same items administered. 
Conditions 2 and 7 and Conditions 3 and 8 were identical because Conditions 7 and 8 always 
reached SE termination before reaching minimum information termination with this item bank. 
These results were not surprising when the size and shape of the item bank is taken into 
consideration. Thus, Conditions 6, 7, 8, 12, and 13 were eliminated from this bank’s analyses 
because of equivalence with other conditions. 

The SE below 0.385 (Condition 1), the SE below 0.315 (Condition 2), and the change in θ 
less than 0.05 (Condition 9) administered the fewest items among the variable-length termination 
criteria conditions. The minimum information criteria conditions administered close to or exactly 
the maximum allowed 100 items, because the item bank contained a great number of informative 
items across θ. The middle ranges in θ used slightly fewer items than the extreme θs for the 
variable-length conditions. This occurred because the starting value for each person was at θ = 0. 
Because the starting value was close to the person’s true θ in the middle ranges, the test 
terminated a few items more quickly. Overall, the numbers of items administered across different 
values of θ were relatively close to the mean value. 

 

Table 1. Summary Results for Item Bank 1 

 
Statistic 

Condition 
1 2 3 4 5 9 10 11 14 

Mean Length 9.27 14.03 33.53 99.99 100 15.58 28.32 14.0 16.0 
SD Length 2.84 3.59 5.44 0.15 0.00 3.37 6.59 NA NA 
Mean Bias 0.06 0.02 0.01 0.00 0.00 0.01 0.01 0.02 0.01 
Mean RMSE 0.46 0.34 0.22 0.16 0.16 0.36 0.29 0.38 0.34 
Kendall's τ 0.88 0.91 0.94 0.96 0.96 0.92 0.94 0.91 0.92 
Pearson r 0.97 0.98 0.99 0.99 0.99 0.98 0.99 0.98 0.98 
Mean Coverage 0.92 0.94 0.95 0.95 0.95 0.94 0.95 0.94 0.94 

 

The mean bias for all of the conditions was very close to 0, with the exception of Condition 
1. This positive bias occurred because this termination method did not estimate low values of θ 
very well. Figure 2 is a graph of the bias conditional on θ for Conditions 1, 2, 9, 11, and 14. It is 
clear that, except for Condition 1, the methods had very little conditional bias across θ. The 
results for Condition 1 were likely due to an interaction between administering a relatively low 
number of items and the c parameter in the low ranges of θ. Future research should investigate 
this interaction. It is worthy to note that Conditions 2 and 9 were variable-length termination 
conditions, and Conditions 11 and 14 were fixed-length conditions whose length corresponded to 
the mean length of Conditions 2 and 9, respectively. There were not any large differences in the 
bias between the variable- and fixed-length conditions. 
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Figure 2. Conditional Bias for  
Selected Conditions in Item Bank 1 

 
 

The RMSEs yielded some interesting results concerning the length of a CAT and the 
accuracy of θ estimation. RMSE was strongly related to the number of items administered; the 
scatterplot in Figure 3 illustrates this relationship. Mean RMSE decreased quickly between 0 and 
35 items. The point on the far right shows that the RMSE decreased more slowly once the test 
was over 40 items long. One interesting item of note was that Condition 2, one of the SE 
termination criteria, had a slightly lower RMSE than Condition 11, its fixed-length counterpart. 
The conditional RMSE values in Figure 4 indicate that the Condition 2 SE termination criterion 
had lower RMSE in the low regions of θ than the fixed-length Condition 11. Although Condition 
1 was clearly the worst for RMSE, the fixed-length and variable-length termination conditions 
with comparable lengths all had similar RMSE values across most of the θ continuum.   

Kendall’s τ and the Pearson correlation between true θ and the CAT estimated θ s followed 
generally the same pattern. Conditions that administered more items had higher correlations. The 
differences were more pronounced with Kendall’s τ. These results are not surprising considering 
the results linking RMSE with test length. 

The mean coverage from Table 1 for all conditions was relatively close to the nominal rate of 
0.95. This indicates that the SEs of θ at the end of a CAT were relatively accurate, on average. 
Coverage was somewhat poor for Condition 1 in the low ranges of θ. Overall, however, the 
confidence intervals functioned near the nominal rate for Bank 1. 
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Figure 3. Scatterplot of Mean RMSE  
on Mean Test Length for Item Bank 1 

 
Figure 4. Conditional RMSE for  

Selected Conditions in Item Bank 1 

 
It is of particular note that the variable-length CATs performed equivalently or slightly better 

than their fixed-length counterparts in terms of bias and RMSE. With a large flat information 
item bank, it appears that variable-length CATs are not biased as previous studies have claimed 
(Chang & Ansley, 2003; Yi, Wang, & Ban, 2001). 
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Bank 2  
Table 2 contains the results from Bank 2 combined across θ  levels. Several of the conditions 

produced the same (or essentially the same) results. Conditions 11 and 13 were equivalent 
because these CAT conditions were fixed length with the same number of items administered. 
Conditions 2 and 7, and 3 and 8 were virtually identical because, with the exception of only a 
very few examinees, Conditions 7 and 8 reached SE termination before reaching minimum 
information termination. Conditions 7, 8, and 13 were eliminated from this analysis. 

Table 2. Summary Results for Item Bank 2 

The Condition 1 (SE < 0.385), Condition 2 (SE < 0.35), and Condition 9 (change in θ < 0.05) 
termination conditions once again administered the fewest items. The minimum information 
criterion conditions administered more than 90 items on average, because the item bank 
contained a great number of informative items across θ, even though the bank was somewhat 
peaked. The change in θ conditions (9 and 10), also gave relatively low numbers of items. The 
minimum information conditions used fewer items at the extremes of θ, because there were 
fewer items in these ranges that gave psychometric information. Condition 3, the lowest of the 
SE termination criteria, administered a larger number of items in the extreme ranges of θ, 
accounting for the increase in the number of items administered. This occurred because there 
were somewhat fewer items in Bank 2 with high information at the extremes of θ. 

All of the conditions were relatively unbiased when combined across θ , except for Condition 
1. This positive bias occurred because this termination method did not estimate low values of θ 
very well, a trend similar to the results from Bank 1. For every condition except Condition 1, the 
conditional bias across θ was always close to 0. 

The mean RMSE from Table 2 yielded results that were similar to the RMSE results from 
Bank 1. The RMSE was quite strongly related to the number of items administered. The 
conditions that administered the largest number of items all had very low RMSE across the entire 
range of θ. The conditions that administered fewer items had larger RMSE values for low θs and 
relatively lower RMSE values for high θs. Figure 5 is a plot of the conditional RMSE values for 
Conditions 1, 2, 9, 11, and 14. Condition 2 had a much lower RMSE in the low ranges of θ than 
its fixed-length counterpart (Condition 11). The SE termination criterion administered a few 
more items to people in the low ranges of θ who were not measured well. Because this condition 
administered more items to the simulees who needed to take more items, the variable-length 
Condition 2 performed better than the fixed-length Condition 11. Condition 9, however, had a 
slightly higher RMSE than its fixed-length counterpart (Condition 14). It appears that the change 

 Condition 
Statistic 1 2 3 4 5 6 9 10 11 12 14 
Mean Length 9.14 13.89 34.83 90.91 98.62 100 15.05 28.48 14.0 99.0 15.00 
SD Length 2.81 3.90 10.17 14.92 4.62 0.00 3.20 6.34 NA NA NA 
Mean Bias 0.06 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 
Mean RMSE 0.48 0.34 0.22 0.16 0.16 0.16 0.40 0.33 0.40 0.16 0.37 
Kendall's τ 0.88 0.91 0.94 0.96 0.96 0.96 0.92 0.94 0.91 0.96 0.92 
Pearson’s r 0.97 0.98 0.99 1.00 1.00 1.00 0.98 0.98 0.98 1.00 0.98 
Mean Coverage 0.92 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.94 
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in θ conditions (Conditions 9 and 10) performed slightly worse than CATs of comparable length 
that were terminated by SE or fixed length. 

The results for Kendall’s τ and Pearson’s r closely matched the results from Bank 1. The 
conditions that used more items performed slightly better. Based on the correlations from 
Conditions 3 and 9, terminating with an average of about 30 items gave a high Kendall’s τ, but 
adding more items did not seem to increase the correlation very much. The results for coverage 
matched closely the results from Bank 1 in that coverage was very close to the nominal rate for 
every condition except Condition 1. The coverage was below 0.90 for θs below −1 in Condition 
1. When an insufficient number of items were administered, the final SE estimates for low values 
of θ were too small.  

Figure 5. Conditional RMSE for  
Selected Conditions in Item Bank 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 3 
Table 3 contains the results combined across θ  levels for Bank 3. The SE termination criteria 

(1, 2, and 3) administered more items in this item bank, because there was not a large number of 
highly discriminating items at every point on θ. The minimum information criteria conditions (4, 
5, and 6) administered fewer items than in Banks 1 and 2 for the same reason. The number of 
items administered for Conditions 9 and 10, the change in θ conditions, were not greatly affected 
by the change in the item bank.  

All of the conditions yielded θ estimates that had a very small positive bias throughout the θ  
continuum. All conditions also had conditional RMSE values that were relatively close to the 
mean RMSE values. Conditions 9, 10 (change in θ ) and 14 (fixed length) had slightly higher 
conditional RMSE at θ = −3. Giving a very large number of items from this small item bank did 
not result in large decreases in RMSE in the same way as did giving more items from the large 
bank. This is because the large number of additional items that the CATs administered did not 
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provide much psychometric information about the examinees. The correlational measures 
showed the same pattern as previous item banks: all correlations were high, and the highest 
correlations were for the conditions with the most items. Finally, the confidence interval 
coverage was very close to the nominal rate of 95%. 

Variable-length CATs in this item bank performed roughly equivalently to their fixed-length 
counterparts. The mean bias, RMSE, and coverage rates were virtually identical between the 
variable-length CATs and the comparable fixed-length CATS. These results further demonstrate 
that variable-length CATs are not more biased than fixed-length CATs. 

Bank 4  
Table 4 contains the results combined across θ  levels for Bank 4. The conditions that 

generally administered the fewest items for Bank 3 also administered the fewest items for Bank 
4. The change in θ conditions administered the fewest items overall for this item bank. Figure 6 
contains a plot of the conditional mean number of items administered across θ for selected 
conditions. Conditions with a great deal of overlap or relatively low conditional variability were 
not shown in this figure. As seen in Figure 6, the number of items administered varied widely 
within some conditions. These differences occurred because of the greater amount of information 
available in the middle of the θ distribution for this item bank. Variable-length conditions 
requiring a SE cutoff (Conditions 1 and 2) administered more items at the extremes of θ because 
the item bank often did not have enough items to fulfill the termination criterion. The minimum 
information criterion conditions (Conditions 4 and 5) administered fewer items in the extremes 
of θ because of a lack of informative items in this region.  

There was a very slight positive bias across all conditions. The trends for conditional bias 
were quite similar across all conditions, varying slightly between just below 0 to 0.1. The 
conditional RMSE values were slightly lower in the middle of θ for all conditions, and the 
conditions that administered more items had slightly lower RMSE overall. The correlational 
measures showed the same pattern as previous item banks: all correlations were high, and the 
highest correlations were for the conditions with the most items. Confidence interval coverage 
across θ was fairly close to the nominal rate of 95% for all conditions. Similar to previous item 
banks, the fixed- and variable-length CATs that had comparable mean number of items 
performed similarly. 
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Figure 6. Conditional Number of Items Administered  
for Selected Conditions for Item Bank 4 

 
Conclusions 

This study examined a wide variety of CAT termination criteria. A few general trends were 
observed when examining the results of all of the item banks together. First, CATs that 
administered more items yielded better θ estimates. The gains in accuracy were largest when 
adding items to short exams. Adding items to exams that were already long (e.g., 50 items) did 
not produce sizable gains in the accuracy of estimating θ. Second, CATs that were too short 
(e.g., fewer than 15 items) did not give good θ  estimates in low ranges of θ. Termination criteria 
that terminated very quickly were not stable. The large conditional biases and conditional RMSE 
values for the Condition 1 CATs demonstrated this. A CAT should always administer a 
minimum number of items, such as 15 to 20, before terminating, and CAT administrators using 
standard error termination should use a standard error that is equal to or smaller than 0.315 for 
accurate measurement of θ in terms of bias and RMSE. Third, the variable termination criteria 
that performed the best when taking test length and accuracy into consideration were the 
conditions that used a standard error below 0.315 as part of the termination rule. This termination 
rule also estimated low θ values more accurately than its fixed-length counterpart. Change in θ 
termination, a relatively new termination rule, performed slightly worse than the standard error 
conditions. Finally, using minimum information termination alone administered too many items 
for large item banks. 

One clear conclusion was that, contrary to claims in the literature (Chang & Ansley, 2003; 
Yi, Wang, & Ban, 2001), variable-length CATs were not biased nor did they perform worse than 
fixed-length CATs. Variable-length CATs either performed equally to or slightly better than 
their fixed-length counterparts when average test lengths were comparable. Previous results were 
a statistical artifact due to the number of items administered and the scoring methods used to  
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Table 3. Summary Results for Item Bank 3 
 Condition 

Statistic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Mean Length 16.02 42.09 100 24.77 36.76 61.10 28.93 61.10 15.44 23.87 42.0 37.0 29.0 15.0 
SD Length 6.03 26.83 0.00 2.95 4.16 8.88 5.42 8.88 2.96 4.09 --- --- --- --- 
Mean Bias 0.03 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 
Mean RMSE 0.41 0.32 0.30 0.35 0.32 0.30 0.33 0.30 0.44 0.39 0.31 0.32 0.33 0.44 
Kendall's τ 0.89 0.92 0.92 0.91 0.92 0.92 0.91 0.92 0.89 0.91 0.92 0.92 0.91 0.89 
Pearson  r 0.98 0.98 0.99 0.98 0.99 0.99 0.98 0.99 0.97 0.98 0.99 0.99 0.98 0.97 
Mean Coverage 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.94 

 

 

 

Table 4. Summary Results for Item Bank 4 
 Condition  

Statistic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Mean Length 20.66 55.38 97.81 27.21 41.33 70.21 25.82 69.22 14.88 24.20 55.0 41.0 26.0 15.0 
SD Length 17.26 36.20 8.19 10.06 15.17 15.66 6.58 15.39 2.88 5.55 --- --- --- --- 
Mean Bias 0.03 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.03 0.02 0.01 0.01 0.02 0.04 
Mean RMSE 0.42 0.34 0.31 0.37 0.33 0.31 0.36 0.31 0.45 0.39 0.32 0.33 0.36 0.44 
Kendall's τ 0.89 0.91 0.93 0.91 0.92 0.93 0.91 0.93 0.89 0.91 0.92 0.92 0.91 0.89 
Pearson’s r 0.97 0.98 0.99 0.98 0.98 0.99 0.98 0.99 0.97 0.98 0.99 0.98 0.98 0.97 
Mean 
Coverage 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.94 
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estimate θ. First, fixed-length CATs in previous simulation studies have generally been much 
longer than variable-length CATs. This means that fixed-length CAT conditions in these studies 
utilize more psychometric information (Revuelta & Ponsoda, 1998), thus giving fixed-length 
tests an unfair advantage in θ estimation. Second, many of these studies used Bayesian methods 
for θ estimation. Numerous studies have documented that Bayesian scoring methods produce 
biased results in the extremes of θ, particularly when tests are short (Guyer, 2008, Stocking, 
1987; Wang & Vispoel, 1998). Previous results claiming that variable-length CATs are biased 
are due to Bayesian θ estimation techniques combined with variable–length CATs that 
terminated with too few items. The trend found in this study was that, no matter how a CAT is 
terminated, using two few items has a negative effect. This was especially true for the large item 
banks, where Condition 1 terminated in a mean of less than 10 items. The θ estimates from this 
condition were highly biased in the low ranges of θ, had high RMSEs, and had confidence 
intervals with the lowest coverage of any condition.  

The best solution to the CAT termination issue might be to use one or more variable 
termination criteria in combination with a minimum number of items constraint. Based on this 
research, 15 to 20 items appears to be a reasonable minimum number of items for variable-length 
CAT termination, depending on the precision needs of the test user. A variable termination rule 
would supplement the minimum item termination rule by administering more items to people 
who are still not measured well. This would ensure stability of the CAT results and could fulfill 
some other desirable properties of θ, such as standard errors below a certain benchmark value 
and the efficiency that is a common desire for CAT users. Future research should explore the 
minimum number of items more thoroughly with various items banks.  

The change in θ criterion, a relatively new termination criterion, performed just slightly 
worse than other termination criteria with a comparable number of items. This termination 
method may be a viable supplement to standard error termination when an item bank does not 
permit a given standard error to be reached in extreme ranges of θ, which can occur in peaked-
information item banks. Minimum item information as a supplemental rule to standard error 
termination, however, is also a viable alternative to simply having one termination rule for a 
small item bank. 

This research does have limitations. The most notable limitation is that this study did not 
control for item exposure or content balancing. It is probable that techniques controlling for item 
exposure and/or content balancing – both practical implementation issues in numerous CAT 
applications – would increase the number of items required for a CAT to give a desired level of 
measurement precision. 

CAT is a good way to measure accurately and simultaneously increase test efficiency. This 
research demonstrated that a wide variety of termination criteria work well if a minimally 
sufficient number of items is used. CATs can dramatically reduce the number of items required 
for accurate measurement over non-adaptive methods, and more research will continue to 
demonstrate the effectiveness of this kind of measurement tool. 
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