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Journal of Educational and Behavioral Statistics 
Fall 2001, Vol. 26, No. 3, pp. 307-330 

A Rasch Hierarchical Measurement Model 

Kimberly S. Maier 
University of Chicago 

In this article, a hierarchical measurement model is developed that enables 
researchers to measure a latent trait variable and model the error variance cor- 

responding to multiple levels. The Rasch hierarchical measurement model 
(HMM) results when a Rasch IRT model and a one-way ANOVA with random 

effects are combined (Bryk & Raudenbush, 1992; Goldstein, 1987; Rasch, 1960). 
This model is appropriate for modeling dichotomous response strings nested 
within a contextual level. Examples of this type of structure include responses 
from students nested within schools and multiple response strings nested within 

people. Model parameter estimates of the Rasch HMM were obtained using the 
Bayesian data analysis methods of Gibbs sampling and the Metropolis-Hastings 
algorithm (Gelfand, Hills, Racine-Poon, & Smith, 1990; Hastings, 1970; Metrop- 
olis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953). The model is illustrated with 
two simulated data sets and data from the Sloan Study of Youth and Social Devel- 

opment. The results are discussed and parameter estimates for the simulated data 
sets are compared to parameter estimates obtained using a two-step estimation 

approach. 

Keywords: Gibbs sampling, hierarchical linear models, item response theory 

Both item response theory and hierarchical linear modeling are used in a variety 
of social science research applications. The use of item response theory (IRT) 
allows connections to be made between observed categorical responses provided by 
students and an underlying unobservable trait, such as ability or attitude (Hamble- 
ton & Swaminathan, 1985; Lord & Novick, 1968). Hierarchical linear modeling 
(HLM) allows the natural multilevel structure present in so much social science data 
to be represented formally in data analysis (Bryk & Raudenbush, 1992; Goldstein, 
1987; Longford, 1993). In some cases, a researcher may wish to study the effects of 
covariates on the latent trait of interest. These covariates may include information 
about the respondents, as well as contextual information. This article will present 
both a model that integrates an IRT and a hierarchical linear model and a method of 
estimating model parameter values that does not rely on large-sample theory and 
normal approximations. 

The author wishes to acknowledge the Alfred P. Sloan Foundation, and the principal investigators 
of the Sloan Study of Youth and Social Development. 
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Item response theory models and hierarchical linear models can be combined to 
model the effect of multilevel covariates on a latent trait. We may wish to examine 

relationships between person-ability estimates and person-level and contextual- 
level characteristics that may affect these ability estimates. Alternatively, we may 
wish to model data obtained from the same individuals across repeated question- 
naire administrations. We may even wish to study the effect of person characteris- 
tics on ability estimates over time. 

In particular, the model resulting from the integration of a hierarchical linear 
model and a one-parameter logistic item response model will be presented in this arti- 
cle. This model will be referred to as a Rasch hierarchical measurement model 
(HMM). The particular Rasch HMM developed in this study incorporates a Rasch 
model (Rasch, 1960) and a two-level hierarchical linear model having a random 

intercept at the first level, with no additional fixed or random covariates at either 
level. This form of a hierarchical linear model is known as a one-way analysis of vari- 
ance with random effects. The Rasch model is appropriate for modeling dichotomous 

responses and models the probability of an individual's correct response on a 
dichotomous item. The logistic item characteristic curve, a function of ability, forms 
the boundary between the probability areas of answering an item incorrectly and 

answering the item correctly. This one-parameter logistic model assumes that the dis- 
criminations of all items are assumed to be equal to one. 

The model resulting from the integration of a hierarchical linear model and a 
Rasch model allows one to estimate all model parameters simultaneously and 
therefore incorporate the standard errors of the latent trait estimates into the total 
variance of the model. In the Rasch HMM, the expected value of the latent trait 

parameter is replaced with a one-way ANOVA with random effects. The Rasch 
HMM can allow one, for example, correctly to model the variances of person- 
level and school-level error while estimating latent trait parameters of student 

ability estimates or student attitudes from student responses to a questionnaire of 
dichotomous items. 

Researchers have expanded traditional IRT models in a number of ways that are 

appropriate in a variety of applications. Person-level characteristics have been 
included in IRT models to help improve estimation of item difficulty parameters, or 
to model the effects of person characteristics upon the estimated latent trait mea- 
sures (Mislevy, 1987; Patz & Junker, 1999a; Patz & Junker, 1999b). The IRT model 
has also been reformulated as a two-level model consisting of items nested within 
people in order to model measurement error among and between these two levels 
(Adams, Wilson, & Wu, 1997; Kamata, 1998). Cheong and Raudenbush (2000) 
take this last example a step further by including a third contextual level.' 

A variety of methods have been used to estimate the parameters of these 

expanded IRT models. A two-step approach has sometimes been used. In this strat- 
egy, an IRT model is used to estimate latent trait parameters for each person, which 
are then with a hierarchical linear model. The standard errors of the latent trait esti- 
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mates are not modeled in the second step, resulting in biased parameter estimates. 
The extent of this bias can be especially large when the total sample size is small or 
when the hierarchical structure is sparsely populated. Others have used methods that 

rely on large-sample approximations or empirical Bayes approaches (Adams, Wil- 
son, & Wu, 1997; Cheong & Raudenbush, 2000; Kamata, 1998; Mislevy, 1987; 
Zwinderman, 1991, 1997). The use of these particular estimation methods, because 

they depend on normal distribution theory, introduces constraints on the minimum 
allowable sample size or the degree to which the hierarchical structure can be 

sparsely populated. In addition, complex integrations are usually required within 
the context of the solution strategy. 

Bayesian methods, a third approach to estimating model parameters of an 
expanded IRT model, do not rely on normal approximations. Bayesian methods 
allow an easier solution strategy that produces unbiased estimates and eliminates 
the need for directly computing complex integrations (Bayes, 1763; Gelman, Carlin, 
Stem, & Rubin, 1995). Values for the parameters of the Rasch hierarchical mea- 
surement model will be estimated using Bayesian data analysis methods. 

The Bayesian paradigm assumes the model parameters are random quantities 
having distributions. The distributions characterizing these unknown parameters 
are conditional on the observed data, which are assumed to be fixed. Bayesian 
inference supplements the likelihood equation with prior beliefs the analyst may 
have about the distributions of the parameters, via prior distributions. The likeli- 
hood and prior distributions are combined according to Bayes' theorem to produce 
the posterior distribution of the model parameters to be estimated. In contrast, nor- 
mal theory or the frequentist method postulates that the true values of the parame- 
ters are fixed and the data are random, and rely on large-sample approximations to 

produce estimates of model parameters. Empirical Bayesian methods make use of 
both paradigms. A subset of parameters is estimated and treated as fixed and known 
values in a subsequent Bayesian data analysis technique to estimate the remaining 
unknown parameters. Typically, estimates of the first subset of model parameters 
are obtained using frequentist methods that rely on approximations. 

Markov Chain Monte Carlo (MCMC) techniques are particular Bayesian data 

analysis methods that are used to estimate model parameters. In contrast to fre- 

quentist methods that produce a model parameter estimate and a standard error of 
the estimate, MCMC techniques can be used to produce the entire posterior dis- 
tribution of the model parameter estimate. Gibbs sampling, a specific MCMC 
technique, is a method for generating random variables from a distribution by 
sampling from the collection of full conditional distributions of the complete pos- 
terior distribution (Gelfand et al., 1990). In complex models such as the Rasch 
hierarchical measurement model, a complicated posterior distribution can be rep- 
resented as a collection of conditional probability distributions having standard 
distributional forms. A single sampled data point is drawn from the conditional 
probability distribution of each parameter, conditional on the values of the col- 
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lection of remaining parameters and the data. The marginal probability distribu- 
tions of the parameters can be constructed from the random draws after the Markov 
chain has converged. 

Bayesian data analysis methods were used to produce parameter estimates of 
the Rasch hierarchical measurement model. In particular, estimates of the param- 
eters were found using Gibbs sampling. If the parameter does not have a condi- 
tional distribution of a common distributional form (the latent trait parameters and 
the item difficulty parameters), the Metropolis-Hastings algorithm has been used 
to generate a random draw from the conditional distribution (Hastings, 1970; 
Metropolis et al., 1953). Patz and Junker (1999b) estimate parameters for a two- 
parameter logistic model using the combination of these particular Bayesian meth- 
ods, and provide a detailed description of these MCMC methods within the context 
of IRT models. 

Construction of the Posterior and Full Conditional Distributions 

As a first step in Bayesian data analysis, the prior distributions for all model param- 
eters must be specified in order to form a posterior density. For the latent trait param- 
eter, it is sensible to assume that the latent trait of individual n, 0,, is drawn from a 
normal distribution (Lord & Novick, 1968) with unknown mean and variance, 

po(O,) - Normal (go, Y). (1) 

Specific prior distributions for the hyperparameters of the latent trait distribution 
will be assigned later; for now, these prior distributions will be noted merely as 

p(tLe) 
and p(0y). 

Typically, item difficulty parameters range between -4 and +4 standard devia- 
tions and can be modeled by a unimodal symmetric distribution (Baker, 1992). 
Consequently, a normal prior distribution will be assigned to the item difficulty 
parameters, 

P(i) 
- Normal 

(g•, 
, ). (2) 

Upon examining the Rasch model, it is clear that the model is unidentified when esti- 
mates for all latent trait and item difficutly parameters are unknown. This difficulty 
can be addressed by assuming that the mean of the item parameters is zero and the 
variance is one. This constraint can be directly incorporated into the prior distribu- 
tion for the item difficulty parameters (Box & Tiao, 1973). 

The use of Gibbs sampling requires that all full conditional distributions of the 
model parameters be determined. Consider the case where students (level-1) are 
nested within classrooms (level-2), and the outcome variable matrix consists of 
the dichotomous response strings students provide on a test with I items. Given the 
N x I matrix x for N = ~=kl n~k individuals answering I items, and assuming condi- 
tional independence among the responses, the likelihood of observing the response 
string x for N students nested within K classrooms is 

310 



A Rasch Hierarchical Measurement Model 

exp I I Xijk(Ojk- i~( 
(O, 41x) = p(x, ) = K 

=l 
j=k 

1 i=1 
(3) 

HHIHI-11 + exp(Ojk i) 
k=1 j=1 i=1 

This is very similar to the likelihood equation for a one-parameter logistic item 
response model, with the addition of an extra indexing variable, k. The unknown 
parameters in the likelihood include the latent trait variables 0 and the item diffi- 

culty parameters ?. Student n's latent trait parameter can be modeled with a one- 

way ANOVA with random effects. The latent trait parameter of group k is expected 
to have a value ak and a variance y2. The random intercept ak at the student level 
is in turn modeled by a linear equation, and is expected to have a mean value of Yoo 
and a variance of too, 

Ojk = k +j E, (4) 

Ejk - Normal (0, (7), (5) 

ak = Yoo00 + 6Ok, (6) 

80k - Normal (0, too). (7) 

The posterior distribution of the Rasch HMM is the product of the likelihood equa- 
tion and the prior distributions of all unknown parameters, 

2 2 p((, 
o, 
a, o 0 , o0, I) 

K nk 

p(E) p(ak, k 00, 00 P )P(oo00 )P O0)P( )P(xIO, ). (8) 
k=l j=l 

The hierarchical linear model is incorporated into the hierarchical measure- 
ment model via the prior distribution for the latent trait parameter, p(01a, ,2). 
Based on the normal distribution specified earlier for the latent trait parameter, 
the prior distribution for the students' latent trait parameters is conditional upon 
the level-i random intercept and the level-i error variance of the hierarchical lin- 
ear model, 

K nk 1 r 
2 

p(o, )oc I exp 2 2-jk (k 2- . (9) 
k=1 j=l ? 22 

The prior distribution for the level-1 random intercept can be constructed by 
assuming that the level-1 random intercept ak is normally distributed with a mean 
of the level-2 fixed intercept 7yoo and a variance of the level-2 error variance "oo, 
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p(Acky 00,1 i) 
2OolXp 

(ak- Y)00.] (10) 

Po 2rt7u----2---ooep 
Combining the prior distribution for the latent trait parameter (Equation 10) and 
the likelihood equation (Equation 3), the full conditional posterior for the latent 
trait parameter of an individual student is 

P(Ojkl, O <, <j><k>,o , , 
0o0o, oo, 

exp Xijk(Ojk i)] 
I exp- 2 Ok - 

211) 
[1 + exp(0jk - S 2)] 

( 

i=1 

The full conditional posterior distribution for an individual student is conditional 
on the remaining students' latent trait parameters, as indicated by the notation 

0<j><k> in Equation 11. Since Equation 11 is not the kernel of any standard proba- 
bility distribution, this posterior conditional distribution cannot be directly sam- 
pled from, necessitating an alternate strategy to generate random draws. 

The full conditional probability distributions of the level-i random intercepts 
and the level-2 fixed intercept can be expressed as products of the likelihood equa- 
tion and normal prior distributions. Using Equation 10 as the prior distribution for 
the level-i random intercept ak, the full conditional probability distribution for this 
parameter is 

p(akJO0 G, 
O, 

a<k>, 0 yF , 0oo, X) Oc 

exp - 
• 

(k )2 exp - (c - jk) 2. (12) 

Since this is a case of normal data, with a normal prior distribution, the full condi- 
tional probability distribution can be reformulated as a normal distribution from 
which sampling is easy (Box & Tiao, 1973; Seltzer & Ang, 1999), 

ak - Normal (&k, ), (13) 

= k = ,Ok + (1- X7k)OO, (14) 

where 

k = , (15) 
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Vk 

[n. 
(16) 

In the case of a one-way ANOVA with random effects, the expected value of 
the level-1 random intercept is the level-2 fixed intercept yoo. A uniform prior dis- 
tribution for the level-2 fixed intercept will be assumed. The full conditional prob- 
ability distribution of this parameter as a function of the conditional distributions 
of the level-1 random intercepts is 

N'() 
-Y 20 0(17) 

P(Yoo[O , a, T ,oo, X) c p(ayoo, oo)(y) (17) 

oc exp (oo -- ak ) (18) 
2T%0 k=1 

As a consequence of the manipulation of Equation 18, the full conditional proba- 
bility distribution for the level-2 fixed intercept yoo is a normal distribution, 

Y0o- 
Normal 

(i, 't0/K), 
(19) 

with a mean of the average of all level-1 random intercepts d, taken across all K 

level-1 groups. 
Several prior distributions for the level-i error variance (o and the level-2 error 

variance too will be considered here. In particular, both informative and noninfor- 
mative prior distributions will be assumed. Using the uniform distribution as a 
prior distribution provides the least amount of prior information possible. The use 
of this prior distribution suggests that any value for the estimate of the parameter 
is equally likely and yields a full conditional probability that is dependent only 
upon the likelihood equation. The inverse of the full conditional probability dis- 
tributions for the level-i error variance (Y and the level-2 error variance too, assum- 
ing uniform prior distributions, are kernels of gamma probability distributions, 

N 

K 

P(toolO, g, G, C, G2, oC0, Cx7 exp 
-2 

(ak y00)2 (21) 

The conditional probability distributions for the variances can be rewritten as 
gamma probability distributions, 
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1 
N-2 2 1 Gamma , K nk1 (22) G 2 1 (jk - OCak)2 

k=l j=l 

I 
Gamma ,K 2 2 (23) 

Too 2 1 (aX 
- 

2 

k=l 

When we wish to incorporate prior knowledge we may have about a particular 
parameter, the scaled inverse chi-square distribution is an informative prior distri- 
bution for the level-1 or level-2 error variances. When this prior distribution is 
assumed for the level-i and level-2 error variances, the inverses of these condi- 
tional probability distributions are found to be kernels of a gamma distribution, 

1 N+v 2 
12-Gamma , K nk , (24) 2 2 S + I I (Ojk k 

k2 k=1 j=1 

Gamma K + v K (25) 
Too 2 S + 1 

(a• -00)2 
k=1 

The scaled inverse chi-square distribution can be scaled to reflect the increasingly 
informative prior information one may have about the error variances. As the param- 
eter v becomes larger, this distribution becomes more concentrated at the mean, 
S/(v - 2). For values of v between 1 and 4, the variance of the scaled inverse chi- 
square distribution 2S2/[(v - 2)2 (v - 4)] is infinite, and this prior information then 
becomes weak relative to the data. 

The full conditional distributions for the item difficulty parameters remain to be 
developed. Recall that the prior distribution for the item difficulty parameters is a 
standard normal distribution. Consequently, the full conditional distribution for 
item i is similar to, but slightly simpler in form than, that of the latent trait 

0jk, 

expI I xijk(Ojk - ,i) 
p(5I<0>, 0, , o c~, (to, Yoo, x) oc K =I j=1 

exp(--2). 
(26) 

I [1 + exp(Ojk - )] 
k=l j=l 

As with the conditional distribution of the latent trait parameter, the full conditional 
distribution for the item difficulty parameters does not have a common distribu- 
tional form. 
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The full set of conditional probability distributions developed previously forms 
the basis for the Rasch hierarchical measurement model. Aside from the latent trait 
and item difficulty parameters, the conditional probability distributions for the 
remaining model parameters are proportional to common distributions and thus 
easy to sample from directly. The conditional probability distributions for the 
latent trait and the item parameters cannot be directly sampled from, and the 
Metropolis-Hastings (M-H) algorithm will be employed to draw samples from 
these conditional probability distributions. 

Examples: Balanced and Unbalanced Data Sets 

Three data sets, two simulated, were analyzed using the Rasch hierarchical mea- 
surement model. The first simulated data set is balanced and represents an ideal 
data situation, with each level-2 group containing an equal number of level-i units. 
A practical example of this data set occurs when a researcher gathers the same 
number of repeated measurements on a sample of students. The second data set is 
an unbalanced sparse data set that would occur when a small and unequal number 
of measurements are made on a sample of students. This data set illustrates a more 
realistic situation that a researcher may experience, and was used to evaluate the 
effectiveness of the model for challenging data situations. The third data set is a 
subset of data from a longitudinal study of adolescents. The spare structure of this 
data set was replicated to create the unbalanced simulated data set. 

The structures of the three data sets are somewhat similar to one another. The 
balanced simulated data set consists of N = 742 response strings to 10 items, with 
a grouping structure that consists of K= 53 level-2 groups, each with nk = 14 level- 
1 response string units. The unbalanced simulated data set has the sample total 
number of response strings, but with a different grouping structure. The level-i 
response string units of this data set are sparsely dispersed within level-2 groups 
with three-quarters of the level-2 groups containing two to three level-i response 
string units, and the remaining level-2 groups containing between four and six 
level-i response string units. The Sloan data has a grouping structure identical to 
that of the simulated unbalanced data but consists of response strings to 7 items. 

The response strings for each of the two simulated data sets were generated in 
the following manner. First, values for the item difficulty parameters were gener- 
ated from a standard normal distribution. Next, values of the latent trait parame- 
ters were generated using values of the level-2 intercept and level-i and level-2 
error variances based on results from descriptive and IRT analyses of the data set 
constructed for the Maier (2000) study. The actual values used for the data simu- 
lation were 0.2835 for the level-i error variance, 0.7099 for the level-2 error vari- 
ance, and -0.0001 for the level-2 fixed intercept. Finally, the probability that a 

level-1 unit would answer an item correctly was calculated using the Rasch IRT 
model and the generated latent trait and item difficulty parameter values. To pre- 
vent the model from fitting the data perfectly, overdispersion was built into the sim- 
ulation of the response strings: A unit's response for a particular test item was 
assigned a value of one if the calculated probability of a correct response exceeded 
a randomly generated uniform number. 
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The third data set is a subset of data from the Sloan Study of Youth and Social 
Development and is similar to the data set used by Maier (2000). This data con- 
sists of responses of 313 adolescents collected while they were engaged in a math- 
ematics classroom. The response set consists of seven questionnaire items that 
loaded on a common factor that was identified as mood (Hektner, 1996). The ado- 
lescents were asked to indicate their levels (high or low) of feeling happy, strong, 
active, sociable, proud, involved, and excited. Table 1 reveals that adolescents 
were more likely to record high levels of feeling happy, strong, involved, proud or 
sociable, and low levels of feeling active or excited. 

TABLE 1 
Frequencies for Mood Components 

Frequency 
Mood Component 0 1 

Happy 277 465 
Strong 354 388 
Active 415 327 
Sociable 290 452 
Proud 340 402 
Involved 287 455 
Excited 460 282 

Implementation of Gibbs Sampling and the Metropolis-Hastings Algorithm 
All three data sets were analyzed and the posterior distributions of the model 

parameters were produced using Gibbs sampling. The M-H algorithm was used to 
draw samples from the conditional distributions of the latent trait and item diffi- 
culty parameters. For all the data sets, two analyses were completed to produce a 
total of four complete analyses: One analysis assumed uniform prior distributions 
for the level-1 and level-2 variances while the other assumed scaled inverse chi- 
square prior distributions for the error variances. In particular, a scaled inverse chi- 
square prior distribution having v = 10 degrees of freedom and a mean S = 2.268 
was assumed for the level-i variance oY. The scaled inverse chi-square prior dis- 
tribution assumed for the level-2 error variance Too had the same degrees of free- 
dom, but a mean of S = 5.689. Swaminathan and Gifford (1982) suggested 
choosing 5 ? v < 15 when utilizing this prior distribution with a Rasch IRT model. 

The candidate-generating density q(x, y) of the M-H algorithm used to simulate 
the latent trait and item difficulty parameters was chosen to be a normal distribu- 
tion having a mean of the current state of the chain x and a standard deviation c,. 
The form of this candidate-generating density produces the random-walk M-H 
algorithm. Since the candidate-generating density is symmetric [(q(z) = q(-z))], the 
probability of the chain moving from the current value x to the proposed value y 
reduces to 

a(x, y) = min 
,(Y) 11 
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The standard deviation c, of the candidate-generating density was fixed to 
achieve an acceptance proportion of roughly 0.5 (Gelman, Roberts, & Gilks, 1996; 
Patz & Junker, 1999b). For the balanced simulated data set, in the case of uniform 
priors for the level-i and level-2 error variances, the acceptance proportion was 
0.5377 for the item difficulty parameters specifying a standard deviation c,, = 0.15 
and 0.4500 for the latent trait parameters specifying c, = 1.0. Assuming scaled 
inverse chi-square priors for the level-i and level-2 error variances and using the 
same values of c,, the proportion of acceptance was 0.5388 for the item difficulty 
parameters and 0.4441 for the latent trait parameters. For the unbalanced simulated 
data set, assuming uniform priors for the error variances, the acceptance propor- 
tion was 0.5418 for the item difficulty parameters and 0.4871 for the latent trait 
parameters. The acceptance proportions for the same data set, assuming scaled 
inverse chi-square priors for the error variances, were 0.5410 for the item difficulty 
parameters and 0.4785 for the latent trait parameters. In the case of the Sloan data 
set and assuming uniform priors, the acceptance proportions were 0.5735 and 
0.6347 for the item difficulty and latent trait parameters, respectively; assuming 
scaled inverse chi-square priors, these respective proportions were 0.5743 and 
0.6274. 

The values of the Markov chains of each model parameter were used to gener- 
ate the corresponding marginal distribution for each of the parameter estimates. 
The starting values used for the analyses of the data sets appear in Table 2. The ini- 
tial value used for the latent trait parameter of each level-i unit was simply the raw 
score averaged across test items. For all analyses, 30,000 iterations of the algorithm 
were run. The first 1,000 iterations were considered to be the burn-in iterations and 
these corresponding deviates were discarded. The resulting 29,000 iterations 
formed the basis for parameter estimation. 

Results ofAnalysis 
The results of the analyses are shown in Tables 3-7 for the simulated balanced 

and Sloan data sets. For the simulated data sets, the true values of each of the model 
parameters are listed in the second columns of the tables. These values can be com- 
pared to the mean of the deviates over 29,000 iterations. The variance of the pos- 
terior distribution is also calculated. The time-series standard error of the estimate 

TABLE 2 
Starting Model Parameter Values 

Model Parameter Starting Value 

Level-1 Variance, o2 0.35 
Level-1 Intercept, ak 0.50 
Level-2 Variance, too 1.00 
Level-2 Intercept, yoo 0.50 
Latent Trait, 0jk Average raw score 
Item Parameters, 4i 0.00 
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TABLE 3 
Item Difficulty Parameter Estimates Under Uniform and Scaled Inverse Chi-Square Prior 
Distributions for Level-i and Level-2 Error Variances, Simulated Balanced Data Set 

Model Time-series 95% Credibility 
Parameter True Value Mean SE of Mean Variance Interval 

o0 -1.95903 
Uniform -1.89 0.00142 0.00912 (-2.090, -1.710) 
Inverse X2 -1.89 0.00136 0.00922 (-2.080, -1.700) 
41 0.75865 
Uniform 0.791 0.00101 0.00674 (0.632, 0.953) 
Inverse X2 0.788 0.00106 0.00658 (0.627, 0.945) 
?2 1.22899 
Uniform 1.32 0.00117 0.00766 (1.150, 1.490) 
Inverse X2 1.32 0.00114 0.00803 (1.140, 1.490) 
43 0.46361 
Uniform 0.394 0.00094 0.00618 (0.241, 0.549) 
Inverse X2 0.392 0.00096 0.00612 (0.238, 0.547) 
?4 -0.61123 
Uniform -0.548 0.00100 0.00605 (-0.703, -0.395) 
Inverse X2 -0.548 0.00096 0.00594 (-0.700, -0.396) 
?5 -1.07601 
Uniform -1.05 0.00102 0.00679 (-1.210, -0.887) 
Inverse X2 -1.04 0.00106 0.00666 (-1.210,-0.885) 
?6 -0.09302 
Uniform -0.177 0.00091 0.00593 (-0.326, -0.025) 
Inverse X2 -0.177 0.00090 0.00594 (-0.329, -0.026) 
47 -0.26429 
Uniform -0.198 0.00088 0.00573 (-0.346, -0.050) 
Inverse X2 -0.196 0.00092 0.00585 (-0.345, -0.044) 

?8 0.62427 
Uniform 0.595 0.00093 0.00612 (0.441, 0.749) 
Inverse X2 0.591 0.00096 0.00616 (0.437, 0.744) 
49 0.92816 
Uniform 0.766 0.00102 0.00654 (0.609, 0.925) 
Inverse X2 0.766 0.00102 0.00645 (0.611, 0.924) 

Note. 95% credibility interval for the deviates in parentheses. 

of the mean can be used as an estimate of the Monte Carlo error. The final columns 
of the tables specify the 95% credibility interval for the deviates. 

Examining the results for the item difficulty parameter estimates of the simu- 
lated data sets first reveals that the agreement between the mean of the posterior 
distribution of the estimate and the true value for the parameter is quite good. For 
both data sets, the true value lies within the 95% credibility interval for all but one 
of the item difficulty parameters. The true value of Item 9 lies just outside the 95% 
credibility interval of the estimate, but within the 97.5% credibility interval. The 
standard error of the estimate of the mean of the item difficulty parameter estimates 
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TABLE 4 
Posterior Distribution of Item Difficulty Parameters Under Uniform and Scaled Inverse 
Chi-Square Prior Distributions for Level-1 and Level-2 Error Variances, Simulated 
Unbalanced Data Set 

Model Time-series 95% Credibility 
Parameter True Value Mean SE of Mean Variance Interval 

o0 -1.95903 
Uniform -1.96 0.00155 0.0104 (-2.160, -1.760) 
Inverse X2 -1.95 0.00143 0.0104 (-2.150, -1.750) 

21 0.75865 
Uniform 0.771 0.00104 0.00638 (0.614, 0.929) 
Inverse X2 0.769 0.00103 0.00637 (0.613, 0.925) 
42 1.22899 
Uniform 1.25 0.00109 0.00733 (1.080, 1.420) 
Inverse X2 1.24 0.00110 0.00694 (1.080, 1.410) 
?3 0.46361 
Uniform 0.470 0.00095 0.00613 (0.315, 0.622) 
Inverse X2 0.465 0.00092 0.00601 (0.312, 0.617) 
?4 -0.61123 
Uniform -0.725 0.00099 0.00653 (-0.887, -0.566) 
Inverse X2 -0.721 0.00096 0.00643 (-0.879, -0.564) 

45 
-1.07601 

Uniform -1.04 0.00108 0.00714 (-1.210, -0.879) 
Inverse X2 -1.04 0.00115 0.00726 (-1.210, -0.869) 
46 -0.09302 
Uniform -0.108 0.00095 0.00604 (-0.263, 0.045) 
Inverse X2 -0.109 0.00096 0.00601 (-0.261, 0.042) 
?7 -0.26429 
Uniform -0.262 0.00098 0.00607 (-0.414, -0.108) 
Inverse X2 -0.260 0.00097 0.00613 (-0.414, -0.105) 
48 0.62427 
Uniform 0.620 0.00094 0.00615 (0.467, 0.774) 
Inverse X2 0.619 0.00091 0.00594 (0.466, 0.770) 
?9 0.92816 
Uniform 0.985 0.00102 0.00681 (0.821, 1.150) 
Inverse X2 0.980 0.00105 0.00664 (0.822, 1.140) 

Note. 95% credibility interval for the deviates in parentheses. 

range from a high value of 0.00142 to a low value of 0.00088, estimated by divid- 
ing the square root of the spectral density estimate by the sample size. These sta- 
tistics were calculated using CODA software (Best, Cowles, & Vines, 1995). 

The results of the Sloan data appear in Table 7. The estimates for the item dif- 
ficulty parameters show that that the sampled adolescents indicated mood levels 
slightly above average. The variability of mood level was greater between people 
than within person, with the variability between people almost twice the variabil- 
ity within persons. Upon examination of the item difficulty parameters, the results 
indicate that it is much easier for this sample of adolescents to agree that they have 
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TABLE 5 
Hierarchical Parameter Estimates Under Uniform and Scaled Inverse Chi-Square Prior 
Distributions for Level-] and Level-2 Error Variances, Simulated Balanced Data Set 

Model Time-series 95% Credibility 
Parameter True Value Mean SE of Mean Variance Interval 

0oo -0.000125 
Uniform -0.0893 0.00087 0.01232 (-0.306, 0.129) 
Inverse X2 -0.0888 0.00089 0.01210 (-0.303, 0.126) 
E0 0.283486 
Uniform 0.282 0.00144 0.00225 (0.196, 0.380) 
Inverse X2 0.266 0.00132 0.00187 (0.188, 0.355) 
Too 0.709858 
Uniform 0.600 0.00146 0.0196 (0.380, 0.920) 
Inverse X2 0.572 0.00116 0.0137 (0.383, 0.840) 
Note. 95% credibility interval for the deviates in parentheses. 

high levels of happiness and feeling sociable; it is much harder for them to agree 
that they are feeling high levels of excitement and feeling active. 

The particular number of bum-in iterations was chosen based on examination of 
autocorrelation values and time series plots. Examination of these plots and statistics 
showed that almost all of the Markov chains exhibited common behavior that was 
indicative of a rapidly mixing Markov chain. The notable exception is the level-1 
error variance 62, which showed a somewhat different mixing pattern and will be 
addressed below. Aside from this particular parameter, the time series plots of the 
remaining parameter estimates show similar mixing patterns. Figure 1 shows time- 
series plots of the Markov chain for Item 2, the simulated unbalanced data set, assum- 
ing uniform priors for the level-i and level-2 error variances, and Figure 2 shows the 
corresponding plot for the simulated balanced data set assuming scaled inverse chi- 
square priors. Figures 3-6 show the corresponding plots for the level-2 and the level- 

TABLE 6 
Posterior Distribution of Hierarchical Parameters Under Uniform and Scaled Inverse 
Chi-Square Prior Distributions for Level-] and Level-2 Error Variances, Simulated 
Unbalanced Data Set 

Model Time-series 95% Credibility 
Parameter True Value Mean SE of Mean Variance Interval 

00o 
-0.000125 

Uniform -0.0722 0.00076 0.00325 (-0.040, 0.183) 
Inverse X2 -0.0722 0.00078 0.00312 (-0.038, 0.182) 
o2 0.283486 
Uniform 0.409 0.00204 0.00493 (0.282, 0.556) 
Inverse X2 0.373 0.00187 0.00412 (0.255, 0.508) 
Too 0.709858 
Uniform 0.580 0.00180 0.0078 (0.420, 0.769) 
Inverse X2 0.576 0.00157 0.0064 (0.431, 0.745) 
Note. 95% credibility interval for the deviates in parentheses. 
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TABLE 7 
Model Parameter Estimates Under Uniform and Scaled Inverse Chi-Square Prior 
Distributions for Level-] and Level-2 Error Variances, Sloan Data Set 

Model Time-series 95% Credibility 
Parameter Mean SE of Mean Variance Interval 

?0, Happy 
Uniform -0.627 0.00115 0.00824 (-0.808, -0.450) 
Inverse X2 -0.621 0.00117 0.00803 (-0.797, -0.448) 
4~, Strong 
Uniform 0.075 0.00112 0.00772 (-0.096, 0.248) 
Inverse X2 0.074 0.00113 0.00766 (-0.098, 0.246) 
42, Active 
Uniform 0.617 0.00115 0.00771 (0.447, 0.790) 
Inverse X2 0.610 0.00116 0.00787 (0.435, 0.782) 
43, Sociable 
Uniform -0.506 0.00123 0.00823 (-0.686, -0.330) 
Inverse X2 -0.500 0.00116 0.00815 (-0.677, -0.322) 
44, Proud 
Uniform -0.053 0.00121 0.00774 (-0.227, 0.118) 
Inverse X2 -0.049 0.00115 0.00790 (-0.223, 0.127) 
?5, Involved 
Uniform -0.534 0.00120 0.00789 (-0.712, -0.361) 
Inverse X2 -0.528 0.00119 0.00803 (-0.705, -0.354) 

S6, Excited 
Uniform 1.030 0.00128 0.00830 (0.850, 1.210) 
Inverse X2 1.010 0.00129 0.00839 (0.836, 1.190) 

Yoo, Uniform 0.234 0.00124 0.01323 (0.011, 0.461) 
Inverse X2 0.229 0.00121 0.01232 (0.012, 0.449) 

o~, Uniform 1.470 0.00541 0.04080 (1.110, 1.900) 
Inverse X2 1.330 0.00505 0.03460 (0.995, 1.730) 

too, Uniform 2.970 0.00881 0.16080 (2.250, 3.820) 
Inverse X2 2.730 0.00779 0.12888 (2.080, 3.490) 

Note. 95% credibility interval for the deviates in parentheses. 

1 error variances. Figures 7 and 8 show the trace plot for the level-1 and level-2 error 
variances of the Sloan data set, assuming inverse chi-square priors. The first four fig- 
ures provide good examples of the type of rapid mixing that occurred with the 
Markov chains of most of the remaining parameter estimates. However, the time- 
series plots for the level- I error variance for all the data sets show a lower rate of mix- 
ing, perhaps indicating that the Markov chain may not have converged. 

The autocorrelation values of the Markov chains for most of the parameters 
rapidly approach zero as the lag increases. Table 8 shows autocorrelation values cor- 
responding to lags of 1, 5, 10, and 50 for the Markov chains of all parameter esti- 

(text continues on page 326) 
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FIGURE 1. Time-series plot of item 2, simulated unbalanced data set, uniform priors for level-] and level-2 error 
variances. 

S10000oo 20000 30000 
FIGURE 2. Time-series plot of item 2, simulated balanced data set, scaled inverse chi-square priors for level-] and 
level-2 error variances. 

ch 
y 



0 10000 20000 30000 
FIGURE 3. Time-series plot of too, simulated unbalanced data set, uniform priors for level-i and level-2 error variances. 
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FIGURE 4. Time-series plot of too, simulated balanced data set, scaled inverse chi-square priors for level-] and 
level-2 error variances. 
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FIGURE 5. Time-series plot of oy2, simulated unbalanced data set, uniform priors for level-] and level-2 error variances. 
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FIGURE 7. Time-series plot aof o, Sloan data set, scaled inverse chi-square priors for level-i and level-2 error variances. 
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mates of the simulated balanced data set. The values of autocorrelation for the sim- 
ulated unbalanced data set and the Sloan data set show the same pattern. As indi- 
cated in Table 8, the autocorrelation values rapidly approach zero for almost all of 
the parameter estimates, a property that indicates rapid Markov chain mixing. As 
with the time-series plots, the notable exception to this behavior is the level-1 error 
variance YC. 

Exploration of Level-i Error Variance 

Additional analyses were completed further to examine convergence and mix- 
ing rates of the Markov chains for the level-i error variance. The Gelman and 
Rubin (1992) convergence diagnostic was calculated for corresponding Markov 
chains. Since this diagnostic requires multiple Markov chains, three separate sets 
of Markov chains were run for each of the two simulated data sets, assuming three 
different starting values for the level-1 error variance. These starting values were 

TABLE 8 
Autocorrelation Values as a Function of Lag, Simulated Balanced Data Set 

Model Level- I & Level-2 Autocorrelation 

Parameter Prior Lag 1 Lag 5 Lag 10 Lag 50 

o0 Uniform 0.69300 0.19200 0.06220 0.00811 
Inverse X2 0.68900 0.19200 0.05730 -0.01010 

51 Uniform 0.66400 0.13900 0.02050 0.01200 
Inverse X2 0.65900 0.13900 0.03940 0.00181 

?2 Uniform 0.67000 0.15200 0.02890 0.00624 
Inverse X2 0.67400 0.15100 0.03710 0.00417 

?3 Uniform 0.65300 0.11100 0.01990 0.00976 
Inverse X2 0.65200 0.13700 0.01700 -0.00305 

?4 Uniform 0.65200 0.12900 0.02600 -0.00388 
Inverse X2 0.65200 0.12800 0.01580 0.00237 

?5 Uniform 0.66500 0.15900 0.02660 -0.01520 
Inverse X2 0.66700 0.14700 0.02940 -0.00038 

?6 Uniform 0.65500 0.13600 0.01790 0.00751 
Inverse X2 0.64800 0.12600 0.01110 -0.00109 

?7 Uniform 0.63700 0.11400 0.01240 -0.00089 
Inverse X2 0.64400 0.12500 0.03240 0.00175 

48 Uniform 0.65200 0.13700 0.01900 -0.00673 
Inverse X2 0.64600 0.13900 0.02920 -0.00078 

?9 Uniform 0.66500 0.14200 0.02180 0.00538 
Inverse X2 0.65900 0.14400 0.04990 0.00386 

Yoo Uniform 0.09960 0.03880 0.02070 0.00588 
Inverse X2 0.09790 0.04480 0.03570 -0.00230 

o• 
Uniform 0.90100 0.76500 0.62600 0.12000 

Inverse X2 0.89600 0.75800 0.61400 0.15000 
Too Uniform 0.18600 0.08570 0.05030 0.01060 

Inverse X2 0.16600 0.08800 0.06140 0.01250 

326 



A Rasch Hierarchical Measurement Model 

1.0, 3.0, and 5.0, while the starting values for the other parameters were retained 
from the first analysis. The Gelman and Rubin diagnostic was calculated for the 
three chains of the level-i error variance using CODA software. All three Markov 
chains for the balanced and unbalanced data sets met the Gelman and Rubin crite- 
ria for convergence, suggesting that the Markov chains of the level-i error vari- 
ance converged to a stationary distribution. 

Autocorrelation values of this additional set of Markov chains were examined 
to assess the rate of mixing. These values were comparable to that of the original 
Markov chains of all the model parameters. These findings suggest that applying 
a thinning interval to the Markov chain for the level-i error variance may be an 
appropriate strategy to improve the mixing rate. Autocorrelation values for Markov 
chains with different thinning intervals were examined and a thinning interval of 
three was identified as the best option because it considerably reduced the auto- 
correlation without substantially increasing the Monte Carlo variance. 

Over all, the additional set of Markov chains for the level-i error variance 
behaved similarly to the chains originally simulated. As with the original Markov 
chains, the 95% credibility intervals (averaged from the three Markov chains) con- 
tain the true value of the level-1 error variance. In most cases, the posterior distri- 
butions are not centered on the true value of the parameter. For both data sets, the 
mean of the posterior distribution for the level-i error variance in the unbalanced 
data set slightly overestimates the true value, while the posterior mean for the level- 
2 error variance slightly overestimates the true value of the parameter. 

Both the original Markov chain and the additional set of Markov chains demon- 
strate similar behavior for the error variance estimates. Clearly this behavior was 
not a statistical artifact present only in the original Markov chains. It was decided 
to investigate whether this behavior was related to the true values of the error vari- 
ance parameters, especially in the case of the level-i variance, which is fairly close 
to zero. New balanced and unbalanced Rasch HMM data sets were simulated using 
a value of one for the level-i variance o2. Model parameters were estimated using 
the same MCMC algorithm as used for the original data sets. The first 1,000 iter- 
ations were discarded as the bum-in, and the Markov chains mixed adequately, as 
indicated by examination of the time-series plots. Again, the 95% credibility inter- 
vals contain the true values of the parameters; again, the posterior distributions are 
not centered on the true value of the parameters. 

Since the results for the new data sets are similar to those of the original data 
sets, this pattern does not seem to be related to the true value of the level-i vari- 
ance. However, the pattern could conceivably be linked to the process used to sim- 
ulate the data sets. As mentioned previously, overdispersion was built into the 
model by comparing the probability of a correct response to a randomly generated 
uniform deviate. This procedure may very well account for the discrepancies 
between posterior means and true values of the level- I and level-2 variances. Also, 
although the Markov chains of the level-1 error variance seem to exhibit a lower 
rate of mixing, the chains meet the criterion of a variety of convergence diagnos- 
tics indicating stationarity had been reached. 
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Comparison to a Two-Step Approach 
To illustrate how the Rasch HMM performs relative to a traditional two-step 

approach, the simulated balanced data set was reanalyzed. First, estimates of the 
latent trait parameter for each of the N = 742 response strings were produced 
according to a Rasch item response model, using the BIGSTEPS program (Wright 
& Linacre, 1993). The true values of the item difficulty parameters were given for 
this step, to make equating unnecessary. The resulting latent trait parameter esti- 
mates were then used as the outcome variable for a two-level HLM that used the 
same hierarchical structure as the simulated balanced data set. The hierarchical 
coefficients were estimated using the HLM program (Bryk, Raudenbush, & Con- 
gdon, 1996). The results of this analysis appear in Table 9. For this particular data 
set, the two-step analysis approach grossly overestimates the level-i random error 
variance and underestimates the level-2 random error variance while correctly esti- 
mating the level-2 fixed intercept. Clearly, in this case the Rasch HMM models the 
data much better than the two-step strategy. 

TABLE 9 
Estimates of Hierarchical Parameters from Two-Step Analysis, Simulated Balanced 
Data Set 

Model Parameter Coefficient SE T ratio 

Yo -0.109593 0.113543 -0.965 
0 = 0.951460 (SE = 0.78255) 
oo = 0.612390 (SE = 0.97543) 

Implementation and Future Research 

To obtain estimates of the hierarchical measurement model parameters, the Gibbs 
sampling algorithms were implemented in a computer program written in Visual 
C++. The object-oriented capabilities of C++ make this language a natural fit for 
the nested multi-parameter structure of the hierarchical measurement model. To 
produce estimates for the Rasch HMM, 18 and 24 minutes were required to run 
30,000 iterations of the Gibbs sampling algorithm on a CPU with a 450 MHz 
processor and 192 MB of memory. CODA software (Best et al., 1995) was used 
as a post-Gibbs analysis tool. This software was used to calculate estimates of the 
mean, standard error of the mean, and the variance of the posterior distributions 
of the model parameters, as well as to generate time-series and autocorrelation 
values. 

The Rasch HMM is very specialized because it appropriates for dichotomous 
responses only and does not allow incorporation of any level-i or level-2 covari- 
ates. The usefulness of HMMs hinges on the degree to which these models can be 
generalized. Generalization can occur along at least three avenues. Different IRT 
models can be incorporated into the model. Work is currently being done that inte- 
grates a Partial Credit IRT model with a 2-level HLM, resulting in a Partial Credit 
HMM. Another way to expand the hierarchical measurement model is to consider 
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an alternative distribution for the level-i random intercept or the level-2 error vari- 
ances. A HMM is currently being investigated that uses a t-distribution for the 
latent trait parameters. This model would allow outlier level-i groups to be modeled 
appropriately. Additionally, more complex item response models and hierarchical 
linear models will also be considered. 

Note 

1While this article was in press, Fox and Glas (2001) appeared. This article pre- 
sents a HMM that combined a different HLM with a two-parameter normal ogive 
IRT model. 
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